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Do you need to get through a calculus course, preferably with a decent grade?  After surviving 

basic calculus classes in three different countries I decided to write this manual to help other 

students.  Hopefully this e-book will help you understand what is going on in your class, or help 

you review if you took calculus a while ago.  You wouldn’t think so when you are in the middle 

of your course, but if you take calculus out of the classroom it is really quite awesome.  I am 

forever grateful to Kamex for showing me this, and for teaching me about infinitely small 

things.   

This is a continuation of the free e-book What is Calculus? – A Bedtime Story, available at the 

website that this book was downloaded from.  If at all possible you will want to read that first, 

but if your course has already started you may not have time.  A brief summary is provided in 

the first chapter.  Please read it. 
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1. Don’t miss class.  But if it is unavoidable, get notes, handouts, and important class news 

from a friend afterwards. 

2. If you don’t have a friend, make one.  Common conversation starters in a calculus class 

are “I don’t get any of this stuff,” and “I hope the test isn’t too hard.” 

3. Study with a friend.  It makes calculus less boring, and you’ll either learn from your 

friend or learn by explaining things to your friend, or both ways. 

4. Read over your class notes when you get home.  Math often takes a while to sink in, and 

you can’t always expect to understand everything right away as your teacher explains it.  

If you don’t have notes or can’t follow them read this e-book. 

5. When you read your notes or a book, cover up the solution to the examples and see if 

you can find the answer yourself.  Even if you can’t, you’ll be better prepared to 

understand the solution when you read it. 

6. Ask a question during class.  Several other students are likely to have the same question, 

but are afraid to ask. 

7. If you have additional questions, talk to your teacher after class.  Ask specific, focused 

questions rather than making a vague request for help.  

8. Do the homework, and make sure each answer is correct (check the back of the book, or 

teacher-provided solutions).  As you go through problems you should be gaining new 

insights and learning what common errors to avoid.   

9. Prepare your own study guide for the exam, well ahead of time.  It should contain 

important formulas and facts, and things you learned while doing the problems. 

10. Go over your corrected exam.  If you didn’t learn it before the exam, you can learn it 

now so you’ll know it for the AP exam. 
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Calculus deals with change by dividing it up into infinitely small parts, denoted by the letter d.  

It was built on the idea that x + dx = x.  This was later replaced by limits:  lim
Δx→0

x + Δx = x.   

The infinitely small parts can be summed back up into a whole:  ∫ dx = x. 

 

As you work, distinguish between changing quantities and constants. 

 

An infinitely small piece of a curve is just like a straight line. 

 

 

 

When change happens at a constant rate calculations are easy.  If an object is moving at a 

constant speed we can find that speed by taking the distance traveled, which is the change in 

position, and dividing it by the elapsed time to find the speed.  Unfortunately, in the real world 

changes rarely happen at a constant rate.  Instead things are usually speeding up or slowing 

down.  In the 17th century, the scientific revolution was in full swing as people sought to explain 

all kinds of phenomena in the natural world.  Regular math was just not meeting their needs.  

The challenge for mathematics was to come up with a way to do calculations involving 

“changing” change.  Thanks to Isaac Newton and Gottfried Leibniz we now have that way.   

We can understand both constant and non-constant change by using calculus.  When we are 

dealing with a changing quantity, a shape, or a curve, we can make meaningful calculations by 

dividing the item in question up into infinitely many infinitely small parts.  Each individual part 

is infinitely small.  During or within that infinitely small part, change is negligible.  Surprisingly, 

we can reach perfectly accurate conclusions this way.  Over time this simple idea has become 

layered with complexity.  A quick look at how calculus was originally developed will help you 

understand the basic ideas, as well as the meaning of the old symbols that are still in use today. 
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Take some quantity x, which could represent a distance, area, volume, a length of time, etc., 

and consider an infinitely small change in it.  This infinitely tiny change, less than a single grain 

of sand added to a whole beach, is called dx.  The term dx is an abbreviation for “the difference 

in x”, now officially called the differential of x.  The first part of calculus is actually called 

differential calculus, but because “differential” sounds complicated I will just use the original 

word “difference” instead.  In algebra, when you place two letters next to each other it is 

assumed that they represent quantities that should be multiplied.  That is not the case for dx; 

dx is a single entity that is represented by two letters.  Anyway, if the quantity x increases by an 

infinitely tiny amount, its size would be x + dx: 

 

 

 

If we had some other quantity y, the infinitely small difference of y would be dy.  If y increases 

by an infinitely small amount, its size would be y + dy:   
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Another way of looking at this is that dy is the difference, or the new size minus the old size:   

dy = (y + dy) – y.  You should keep in mind that the difference could be negative, since y (or x, or 

any other quantity) could be decreasing instead of increasing.  In calculus you may express the 

difference of anything by putting a d in front of it.  If you have some area A, then the difference 

of A is called dA, and it represents an infinitely small change in the area.  dV would be the 

infinitely small difference of a volume V, and so on.  Not too hard so far. 

In algebra, x, y and other letters often simply represent fixed unknown quantities.  We can 

solve for them and find one or two values for them that will “fit” an equation.  Now that you 

have reached calculus you will use such letters to represent quantities that can increase or 

decrease.  Isaac Newton called these changing, or “flowing”, quantities “fluents”.  Letters near 

the end of the alphabet will represent changing quantities.  Lowercase letters at the beginning 

of the alphabet like a, b, and especially c, are often used for constants.  Since the definition of a 

constant is that it never increases or decreases, the difference of a constant is always zero.  

 

Example 

When Myra checks out her new college calculus textbook, she notices that it contains 

4860 different problems.  If the number of problems in Myra’s textbook is represented by 

the letter P, find dP. 

Sometimes people will rip pages out of a magazine so they can keep a good article or a recipe, 

but it seems unlikely that anyone would steal a page from Myra’s calculus book to obtain a 

particularly exciting problem.  We expect P to stay constant, even when we consider all other 

possible variables.  P will be the same now or at the end of Myra’s course, if she keeps or sells 

her book, or if the book ends up being used for a different course at another college.  dP should 

be the difference, or the “new” value minus the “old” value.  dP = (P + dP) – P.  Since the new 
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and old values are identical for the constant P, regardless of how we define “new” and “old”, dP 

is zero.  dP = d(4860) = 0.  Notice that dP is zero even though P is quite a large number. 

 

As we said earlier, an infinitely tiny change in the quantity x is represented by dx.  Implied in 

this is that we can divide x into infinitely many infinitely small parts, all of size dx. 

Ideally the only difficulty in calculus should be the term “infinitely small”.  How small is that 

exactly?  Some people would like to avoid having to imagine this by saying that infinitely small 

is really zero.  I would actually prefer that too so I don’t get dizzy thinking about it.  However, 

when we divide a variable quantity like x into infinitely many infinitely small parts, we want to 

be able to put it back together.  That is, the sum of all of those infinitely tiny dx’s must be x.  

You can’t really do that if you say that each dx is zero, so let’s stick with “dx is infinitely small”.   

Just like “infinitely large”, infinitely small is a concept rather than a specific size.  In calculus the 

sum of the infinitely small parts is abbreviated as S, but back when calculus was discovered a 

special elegant letter S was used to represent this sum:  ∫.  So, when we go to put x back 

together we take the sum of all the dx’s, which is abbreviated as ∫ dx.  Now we can say that 

∫ dx = x.  This just states that x is the sum of the infinitely many, infinitely small dx’s that we 

have divided it into.  In the same way ∫ dy = y and ∫ dA = A.  In calculus, the sum is called an 

integral (just like an integer is a whole number, an integral is the whole thing). 

If you increase something by an infinitely tiny amount, is it really larger than it was before??  

The odd idea that x + dx is equal to x is what makes calculus possible.  We can add differences, 

multiply them, and even divide by them.  Then we say that x + dx = x, which makes dx just 

disappear when it is no longer required.  Once the idea was there it was surprisingly easy to set 

up the framework of this new math.  Calculus worked, for constant change as well as changing 

change, and it provided the wings on which Newton’s imagination soared through the solar 

system.  Science advanced quickly as people in Britain and Europe began using this powerful 

new tool to help them solve problems that had been beyond their reach before.   

After the idea of calculus became widely known Bishop Berkeley mocked differences as “ghosts 

of departed quantities”, and called conclusions based on them invalid: “For when it is said, let 

the Increments vanish, i.e. let the Increments be nothing, or let there be no Increments, the 

former supposition that the Increments were something, or that there were Increments, is 

destroyed, and yet a consequence of that supposition, i.e. an expression got by virtue thereof, 

is retained.”  Berkeley is saying that differences are either there or not.  You can’t just use them 

to draw some conclusion and then have them conveniently disappear.  Because he did have a 

point there, mathematicians eventually brought in the concept of limits to make the basic idea 

of calculus work in a more elegant way.  Instead of the infinitely small change in x that is called 
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dx, they considered a regular small change in x.  “The change in x” was called Δx, using the 

Greek letter d, delta.  Now imagine that you have x + Δx, and Δx gets smaller and smaller.  The 

limit of this process is that you would eventually just have x.  A very careful definition of the 

word “limit” provided a counter-argument to Bishop Berkeley’s objection.  Your course will 

devote an entire chapter to limits, and so will this e-book.  We do this to avoid, or at least 

sidestep, the problem of having to say that x + dx = x so that dx must be nothing.   

 

An alternative and completely unofficial explanation of x + dx = x is provided below for your 

entertainment.  Please read it critically and form your own ideas.  

Because infinity is a concept rather than a number, it has some very peculiar properties.  

For example, there are infinitely many counting numbers.  However, half of those are 

odd numbers, and there are also infinitely many of them.  The other half are even 

numbers, and again there are infinitely many of those.  It seems that ∞ ÷ 2 = ∞, and 

∞ + ∞ = ∞.  If you have infinitely many of something, and you add one more, you 

still have infinitely many items:  ∞ + 1 = ∞. 

Infinitely small has some of these same peculiar properties, such as “infinitely small” ÷ 2 

= “infinitely small”.  Also, if you actually had something infinitely small, everything else 

would become infinitely large by comparison.  That is quite a scary thought.  When 

Kamex first pointed this out to me I was plagued by an irrational fear of very small 

objects for some time.  Fortunately, there probably is no such thing as “infinitely small” 

in the real world.  The universe appears to have a smallest unit of time, called the Planck 

time (probably about 1 x 10-43 seconds) and a smallest unit of distance, called the Planck 

length (thought to be about 1.6×10−35 meters).  Mathematics is not restricted by such 

realities however, and we can imagine that dx exists as a theoretical infinitely small 

change in the variable x.  Now consider x + dx.  By placing an infinitely small increment 

in x next to the variable x, we have actually made x infinitely large by comparison.  Most 

of the time this goes unnoticed and doesn’t cause any problems.  A picture of an 

infinitely large object drawn on paper looks the same as a picture of a regular object, and 

the paper may be safely disposed of at your local recycling facility.  However, if you do 

multiple calculations involving the same infinitely large object, or compare two such 

objects, you could run into an inconvenient paradox. 
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Odd as it may seem, x + dx = x; that is, adding dx to x does not change its size even 

though dx is not equal to zero.  If x has temporarily become infinitely large, that may not 

really be a contradiction.  Another way of looking at this is to say that x is a set that 

contains an infinite number of increments of size dx.  x + dx is a set that contains an 

infinite number of increments of size dx, plus one.  Both sets are infinitely large, so the 

additional dx does not contribute anything to the total size of x.   

When we are dealing with infinity, we tend to toss the concept around in a casual 

manner.  One infinity is just like another infinity – they all look the same to us (even 

though Georg Cantor already proved that there are some infinities that are much larger 

than others).  Fortunately we are more careful with the infinitely small differences we 

use in calculus.  The key seems to be to establish a relationship between variables before 

we shrink them down to something infinitely small.  That is what functions are for.  

Then we name these infinitely small quantities so that we can compare them and 

distinguish them from each other, even though they are all “infinitely small”. 

 

To better understand change, we make graphs of it.  Steady change usually graphs as a straight 

line, while “changing” change ends up looking like a curve of some sort on our graphs.  When 

we use the idea of an infinitely small change along with such curves, it is effectively like 

zooming in on the curve: 

    

An infinitely small piece of a curve is just like a straight line. 

These are the basic ideas of differential and integral calculus.  They have been expanded to help 

people solve many different kinds of problems.  
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9a · 9b = 9a+b             (9a)b = 9ab                                               

9a

9b = 9a-b      (9e)a = 9aea 

9-a is  
1

9a
     9

1

n = √9
n

 

90 = 1      9
a

n = √9an
 or ( √9

n
)

a
 

 

 

 

Exponents are very important in calculus, and they are also the second item in “Please Excuse 

My Dear Aunt Sally”.  This means that they have a very high priority in the order of 

mathematical operations.  An exponent on something generally belongs exclusively to that one 

thing, unless there are parentheses present.  So, 9e2 is just 9e2, because the exponent applies 

only to the e.  However, once you place some parentheses they get priority, and the exponent 

applies to the entire thing inside those parentheses.  (9e)2 means 9e ∙ 9e which is 81e2. 

First we will do some multiplication involving exponents, which is the easiest part.  

93 · 94 = ?  This really means 9 · 9 · 9 times 9 · 9 · 9 · 9.  Now you have seven 9’s in a row, which is 

97.  For multiplication, just add the exponents.  

95

93
 = 

9 ∙ 9 ∙ 9 ∙ 9 ∙ 9

9 ∙ 9 ∙ 9
 = 92.  For division, we can subtract the exponents.  Notice that by subtracting 

exponents, we find that 
91

91
 is 91-1 which is 90.  Since any number divided by itself is 1, 90 must 

mean 1.  That works for every other number too, except for zero.  Since we can’t divide by zero, 

00 is really undefined.  You might think that 00 should just be 1 too, but on the other hand 0 to 

any other power is 0.  When something is not defined, you can often get a handle on it by 

sneaking up on it:  0.250.25 = 0.70710… , 0.10.1 = 0.79432… , 0.010.01 =  0.95499…. The limit of this 

process is 1.  If you really need to have a value for 00, you should probably use 1. 

Another thing that happens when you start subtracting exponents is that you end up with 

negative exponents.  Consider  
92

95
.   You can write that as 

9 ∙ 9 

9 ∙ 9 ∙ 9 ∙ 9 ∙ 9
, and cross off two 9’s on 

the top and bottom.  Be careful because there is still a 1 on the top after you are done with 
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that:  
9 ∙ 9 ∙ 1 

9 ∙ 9 ∙ 9 ∙ 9 ∙ 9
  = 

1

93
.  If you had subtracted the exponents to begin with that would leave 

you with 9-3.  This tells you that 9-3 means  
1

93
.   

You can also put an exponent on something that already has an exponent.  This looks like 

(92)3.  Thinking carefully about what that means, we rewrite it as 92 · 92 · 92 = 96.  So, when you 

raise a power to another power, you multiply the exponents.  Be careful when there are 

multiple things inside the parentheses.  (9e)3 means 9e ∙ 9e ∙ 9e, or 93e3. 

What about exponents that are fractions?  Let's consider 9
1

2 .  We know that when we multiply 

things with exponents, we can just add the exponents.  So  9
1

2 ∙ 9
1

2  = 9
1

2
+

1

2  = 91.  This means 

that 9
1

2  has to represent a number that, when multiplied by itself, is 9.  The only candidate for 

this is √9, since √9 ∙ √9 = 9.  So what is  9
1

3?  There would have to be a number such that  

9
1

3 ∙ 9
1

3 ∙ 9
1

3 = 9.  This is the number we call the cube root of 9, or √9
3

.  By now you can probably 

guess that 9
1

4 is √9
4 , and so on.  

Calculus also involves more complicated fractional exponents like 9
3

2.  Just use your knowledge 

of fractions to see how such an exponent could have been created.  We know that when we 

raise a power to a power, the two numbers are multiplied.  That means that 9
3

2 could have been 

created in two ways:  (93)
1

2  or (9
1

2)
3

.  Therefore, 9
3

2 = √(93) = (√9)
3
.  Both these forms mean 

the same thing.  Notice that it is the denominator of the fractional exponent that determines 

what kind of root is involved.  Scary-looking fractional exponents follow the same rules as 

regular exponents.  Add them when you multiply, and subtract them when you divide. 

 

 

While you may not think of trigonometry as being useful in any way, it is scattered all through 

your calculus course.  A few helpful trigonometry facts can make your life a lot easier.  Use this 

rather boring reference section when you need it, and skip ahead to the next chapter for now.  

For additional trigonometry help see:  Algebra 2 & Pre-Calculus:  "Trigonometry". 

 

http://fcserver.no-ip.org/math/?page=ebooks
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Angle (radians) Angle (degrees) Sine Cosine 

0 0 0 1 

π/6 30 1/2 √𝟑/2 

π/4 45 √𝟐/2 √𝟐/2 

π/3 60 √𝟑/2 1/2 

π/2 90 1 0 

 

In quadrant I the sine gets larger as the angle gets larger, and the cosine gets smaller.  You 

should either have these values memorized, or preferably be able to derive them by drawing a 

unit circle. 

 

(sin(x))2 is normally written as sin2x.  By the Pythagorean Theorem,  

 

     sin2x + cos2x = 1 
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Divide both sides of this equation by either sin2x or cos2x to get two more useful identities that 

you won’t have to memorize. 

 

sin2x + cos2x = 1                         tan2x + 1 = sec2x                              1 + cot2x = csc2x 

 

Unfortunately, if you need the sine or cosine of two angles added together, you can’t find the 

sine and cosine separately and then add them up.  Sin(x + y) is not equal to sin x + sin y!  

Instead: 

sin(x + y) =  sin(x) cos(y) + cos(x) sin(y)                         sin(x – y) = sin(x) cos(y) – cos(x) sin(y)  

cos(x + y) = cos(x) cos(y) – sin(x) sin(y)                         cos(x – y) = cos(x) cos(y) + sin(x) sin(y) 

 

When x = y we get two very useful equations that you will be expected to know: 

sin(2x) = 2 sin(x) cos(x) 

 

cos(2x) = cos2x – sin2x 

 

The second formula can be used to simplify problems that contain the square of the sine or 

cosine: 

cos(2x) = cos2x – sin2x   

cos(2x) = (1 – sin2x) – sin2x            or             cos(2x) = cos2x  - (1 – cos2x).   

cos(2x) = 1 – 2sin2x                                          cos(2x) = 2cos2x – 1 

2sin2x = 1 – cos(2x)                                          2cos2x = 1 + cos(2x) 

Therefore: 

sin2x = 
𝟏

𝟐
(1 – cos 2x)                                        cos2x = 

𝟏

𝟐
(1 + cos 2x) 
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Knowing how to factor is important in this section.  Remember that a2 – b2 = (a + b) (a – b). 

 

Continuous functions have no holes or breaks in their graphs. 

 

An infinitely small hole (removable discontinuity) appears when a rational function has a factor 

in the numerator that cancels out a factor in the denominator.  The limit exists at the hole. 

 

In order for a limit to exist, the left-hand limit must equal the right-hand limit. 

 

Limit = ∞ means that the limit doesn’t exist. 

 

 

 

 

To survive your chapter on limits you must know that  

a2 – b2 = (a + b) (a – b) 

If you want to see how this works, and remember it better, grab a piece of paper and some 

scissors.  Cut yourself a square with sides a, and then remove a square with sides b from it like 

this: 
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This represents a2 – b2.  Next, cut along the dotted line and rearrange: 

 

Now you can see that a2 – b2 = length ∙ width = (a + b)(a – b). 

An example of this would be x2 – 9 = (x + 3)(x – 3).  Don’t forget that 1 is a square too.  y2 – 1 = 

(y + 1)(y – 1). 

Either a or b, or sometimes both, could have exponents:   

a4 – 25 = (a2 + 5)(a2 – 5) 

Problems may also use square roots.  Just as x2 – 9 = (x + √9)(x – √9), you can write x2 – a as  

(x + √a)(x – √a). 

 

This chapter in your textbook introduces the idea of limits.  To ease you into the topic your 

book will ask you to use these limits on something that you are already familiar with:  finding 

the value of a function.  In the picture below, you can see the graph of a function.  
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At point A, the value of x is 1.  When you put that into the equation of the function,  

y = - x3 + 2x + 2, you get a y-value of 3.  We say that the value of the function is 3 when x is 

equal to 1.  If x is not 1, but just a little bit bigger, you can say that the value of the function is 

close to 3.  The closer x gets to 1, the closer the function value gets to 3.  In this case we would 

say that x is approaching 1 from the right, since we are considering values of x that are to the 

right of 1 on the x-axis.  We could also look at x values smaller than 1, and then get closer and 

closer to 1 from the left.  Either way, the function value approaches 3 as x approaches 1 more 

and more closely.  We say that the limit of the function value is 3 as x approaches 1.  By the 

way, I will use y = - x3 + 2x + 2 interchangeably with f(x) = - x3 + 2x + 2.  The “y = …” notation 

looks simpler and it is what you actually use to construct a graph of the function.  The “f(x) = …” 

way of writing a function allows us to specify what value of x was used to obtain a particular 

value of y shown on the graph:  f(1) = 3 is a quick way to write that y is equal to 3 when x is 

equal to 1. 

Limits are very straightforward when the function has a continuous graph.  However, some 

functions have a break or a hole in the graph.  For example, y = 
x2−9

x−3
 does not have a value 

when x = 3.  The best we can do is get really, really close to 3 and see what happens.  You may 

want to take your calculator and try that out.  You should find that y gets closer and closer to 6 

as x gets closer and closer to 3.  This happens whether you start at 2.9 and go up, or at 3.1 and 

go down.  Even though the function does not have a value at x = 3, we say that the limit of the 

function value, as x approaches 3, is 6. 
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As you do your calculations, you might notice that when you get really close to 3, the bottom 

part of the fraction gets to be very small.  Normally, when you divide something by a very small 

decimal number, like .0001, you end up with a large result.  In this case however, the top part 

of the fraction also gets smaller.  Just calculate the top and the bottom parts separately to see 

that.  The reason is that x2 – 9 is the same as (x – 3) times (x + 3).  The bottom part of the 

fraction can get extremely small, but it is always cancelled out by the (x – 3) in the top part.  In 

the end, the actual value of the fraction is always what is left, x + 3.  Even though x is not 

permitted to be 3, the value of the function, x + 3, approaches 6 as x approaches 3. 

Let’s see how this kind of thing was done before anyone had even heard of calculators or limits.  

Here is an example from the first calculus textbook, published in 1696: 

Example 

y =  
a2− ax

a − √ax
 , where a is a positive constant.  Find the value of y when x = a.   

Here x and y represent variable quantities, while a is a constant.  When x is equal to a, both the 

numerator and the denominator of the fraction will be zero.  Notice that there is no mention of 

the word limit at all at this early date, or any major concern about potentially dividing by zero.  

This sample problem was solved by eliminating the nasty square root on the bottom (although 

if you look closely you may be able to do it faster by spotting the difference of two squares). 

y =  
a2− ax

a − √ax
 ∙ 

a + √ax

a + √ax
   Don’t multiply out the top part; we are looking for stuff to cancel out: 

y = 
(a2− ax)(a + √ax)

a2− ax
 

y = a +  √ax    Now let x = a: 

y = a + √a2 

y = 2a 

Wow, this was truly the Wild West of mathematics.  They divided by a2 – ax first, and then 

made it equal to 0.  That looks like they were cheating and dividing by zero!  Now that things 

are more civilized … we just do the same thing but we cover it up much better.   Rather than 

saying that x is equal to a, we make sure that this never officially happens.  Instead, we use the 

limit as x approaches a.  Once the division has been accomplished, it becomes obvious that the 

limiting value of this limit process would be 2a.  We don’t actually claim that y = 2a; we just say 

that the limit of y, as x approaches a, is 2a. 
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lim
x→a

(a2− ax)(a + √ax)

a2− ax
 = lim

x→a
 = a + √ax = a + √a2 = 2a 

Division by zero?  It never happened, or at least you can’t prove that it did.   Problem solved.   

You should become comfortable with the idea that a limit is something that you may not be 

able to reach but that you can come as close to as you want.  To make the definition of the 

word limit even more solid, textbook examples will feature piecewise defined functions.  The 

image below shows the piecewise function y = 
x2−9

x−3
 if x ≠ 3 and y = 4 if x = 3: 

 

 
 

 

The limit of y is still 6 as x approaches 3, because that is what the function value keeps getting 

closer and closer to.  The actual value of the function is 4 when x is equal to 3, so nobody can 

claim that we are just using this limit thing to justify a division by zero. 

Caution:  the open circle shown on the graph at the point (3, 6) is misleading in the sense that it 

is a lot smaller than it looks.  The “hole” that it represents is infinitely small so you shouldn’t be 

able to see it at all.  In fact, x could be 3.0000000000000000000000000000000000000001 

without causing any problems.  Realizing this may make it easier for you to understand that 

there is a still a limit at such a point.  

Although the hole is incredibly small, it is there nevertheless.  The function is not continuous.  

These infinitely small holes appear whenever a rational function has a factor in the numerator 
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that cancels out a factor in the denominator.  For a function like f(x) = 
x2−4

x−2
, x ≠2 the 

discontinuity at x = 2 can be removed by actually doing the division and replacing f(x) with the 

new function g(x) = x + 2 which has no restriction on x.  A discontinuity involving a hole like this 

is called a removable discontinuity. 

As you go through your chapter you will learn about left-hand limits and right-hand limits.  

Again, these limits refer to function values.  To get a right-hand limit, put your finger on the 

function graph to the right of the point at which you are trying to find the limit, and then move 

closer to it.  For the left-hand limit you start to the left and move right.  If you end up with two 

different values when you do this, the Limit does not exist and you will not be able to use 

calculus to find how fast the function is changing at that point.  This can happen if there is a 

break or gap in the function. 

If there is no limit for the function value, calculus will not be useful, at least at that particular 

point.  Another case where this happens is if there is no limit because the function values keep 

getting larger and larger or smaller and smaller near the point in question.  We say that the 

limit is positive or negative infinity, but that really means it does not exist.  It is like saying, “The 

sky is the limit.”  This expression means that there is no limit.   

Lim = ∞ means there is no limit.   

This kind of thing is usually caused by a rational function that doesn’t have a factor in the top 

part that cancels out the division on the bottom.  For example, if f(x) = 
x2+ 4

 (x − 2)2
 , a value of x 

very close to 2 causes a division by a very tiny number, and there is nothing in the numerator 

that cancels it out.  That makes the function value shoot to infinity as x gets close to 2, creating 

a vertical asymptote at x = 2.  An asymptote is a line that the graph of a function approaches 

more and more closely, but never reaches.  The function f(x) = 
x2+ 4

 (x − 2)2
 is shown below, along 

with the asymptote at x = 2.  The limit, as x approaches 2, is infinity.  The limit does not exist. 
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Looking for lim x→a of a rational algebraic (no trig, logs or bx) function?  There are 3 

possibilities: 

1.  The function exists at the point in question so you can plug in the value directly 

2.  The top and bottom have a common factor (there is a removable discontinuity) 

3.  There is no common factor so the function has a vertical asymptote (lim = ±∞).   

Don’t hesitate to use your graphing calculator or graphing software to see what is going on. 

 

Limits can often be computed by using algebraic manipulations.  Usually these manipulations 

involve:  factoring, the difference of two squares, the difference or sum of two cubes, and the 

difference of two squares in reverse.  That last part is useful when you see a fractional 
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expression that has √… −  √…  on the top or the bottom.  Multiply by 
√… + √…

√… + √…
 to eliminate the 

radicals on one end, and don’t worry about the other end.  Something will probably cancel out, 

allowing you to find the limit.    

As you rearrange limit expressions using various tricks, do not rush to multiply out the terms on 

the top or the bottom.   Since you are looking for things to cancel out, the factored form is 

usually better. 

 

If there is no way to change the expression in your problem to a more favorable one, you may 

be expected to find the limit simply by considering what actually happens when x approaches 

the indicated value. 

The next example involves the natural logarithm function, ln (x).  You may recall that this 

function expresses any number x as the number e raised to some power.  Below is a picture of  

y = ln x: 

 

 

 

 

Example 

Find lim
x→0+

1−ln x

x
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[Survival Tip:  Don’t just mindlessly read ahead to get the answer to examples in a text.  Cover 

up the solution and think about the problem first.  Even if you can’t solve it, you will be better 

prepared to understand and remember the explanations provided in your book.] 

So what’s with that x → 0+ part?  As a student, I learned to ignore that kind of thing and just 

look for the limit as x goes to 0.  But now that I have to make my own problems I need to pay 

more attention.  I can’t just ask for lim x → 0 here because ln x doesn’t exist to the left of x = 0.  

The limit must be approached from the right only.  Since you’ll probably already do that 

intuitively it won’t matter much to you.  Consider what happens to ln x as x gets very small.  You 

can see that the graph takes a nosedive when it gets near zero.  The reason for that is that the 

only way to create a very small number using ex is to put a large negative exponent on e.  The 

natural log function gives you that exponent, so it returns an extremely large negative number 

when x is near 0.  Try it out on your calculator.  This means that 1 – ln x will be an extremely 

large positive number when x is near 0.  And what happens when you take a really large 

number and divide it by a really tiny number?  It just gets even bigger.  lim
x→0+

1−lnx

x
 = ∞, which 

means that it doesn’t exist.  You can check your work by entering y = 
1−ln x

x
 in your favorite 

graphing app. 

 

 

The Limit Laws 
 

Limits obey the following rules.  If f and g are functions and a and c are constants, then: 

1.  lim
x→a

𝑓 + g = lim
x→a

𝑓 + lim
x→a

𝑔 

2.  lim
x→a

𝑓 − 𝑔 = lim
x→a

𝑓 – lim
x→a

𝑔 

3.  lim
x→a

c𝑓 = c lim
x→a

𝑓 

4.  lim
x→a

𝑓 ∙ 𝑔 = lim
x→a

𝑓 · lim
x→a

𝑔 

5.  lim
x→a

𝑓

𝑔
 = 

lim
x→a

𝑓

lim
x→a

𝑔
  provided g ≠ 0 

6.  lim
x→a

𝑓n = (lim
x→a

𝑓)
n

 

7.  lim
x→a

√𝑓n  = √lim
x→a

𝑓n  
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There are also some basic common sense rules.  For example, the limit of 5 is 5, and if x 

approaches a, the limit of 5 is still 5.  lim
x→a

c = c  where c is a constant.  The limit of x, as x 

approaches a, is of course a:  lim
x→a

x = a.  That last statement leads to these next two: 

lim
x→a

xn = an 

lim
x→a

√x
n

 = √a
n

 

This says that if, for example, x approaches 4 and f(x) = √x then the limit of that is √4 =2. 

 

Limits at Infinity 
 

 

To take advantage of the limit of 
1

x
, divide the top and bottom polynomial by the highest power 

of x in the denominator.   

 

1. If the highest power of x on the top is smaller than the highest power of x on the 

bottom, the function will always approach 0 as x→∞.  

2. If the leading term on the top has the highest power, the function will approach positive 

or negative infinity.   

3. If the highest powers of x on the top and bottom are equal, the function approaches a 

definite number which is determined by the coefficients of the leading terms.  

 

 

 

 

Sometimes you will be asked to find the limit of a function f(x) as x goes to infinity.  If the 

function in question is composed of one polynomial divided by another polynomial, there is a 

handy trick we can always use.  This trick is based on the fact that the limit of 
1

x
 is zero as x 
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becomes infinitely large.  Let’s see how it works. 

 

To take advantage of the limit of 
1

x
, divide the top and bottom polynomial by the highest power 

of x in the denominator.  Note that this means dividing every single term, because it is easy to 

forget some.  

  

Example 

Find the limit as x→∞ of f(x) = 
x3+3x2+4x+7

x5+x4+2x2+10
.   

What happens to this function when we have very large or very small values of x?  To find out, 

divide all the terms by the largest power of x in the denominator, which is x5 in this case.  After 

simplifying, we end up with f(x) = 

1

x2+
3

x3+
4

x4+
7

x5

1+
1

x
+

2

x3+
10

x5

.  Now we have to stop and consider what 

happens to something like  
10

x
  when x gets very large (or very negative).  If you think about that 

for a while you will realize that it is just the same as for  
1

x
 ; the expression eventually gets very 

close to zero.  If we replace all of the expressions of the form 
a

xn
 with zero, we see that the 

value of this function approaches 0 as x approaches positive or negative infinity.  That means 

there will be a horizontal asymptote at y = 0. 

 

Example 

Find the limit as x→∞ of f(x) = 
x2

√x3+2x2
. 

Be careful, because the highest power of x is really x3/2 since x3 is underneath a square root 

sign.  [Remember that √x is the same as x1/2, so √x3 is (x3)
1

2.]  When you divide x2 on the top by 

x3/2 you subtract the exponents to get x1/2.  On the bottom of the fraction we can divide by x3 

because we are working under the square root sign: 

lim
x→∞

x1/2

√x3

x3+
2x2

x3
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lim
x→∞

√x

√1+
2

x

  

The limit of 
2

x
 as x goes to infinity is zero, which leaves √1 = 1 on the bottom.  As x goes to 

infinity so does the square root of x on top, which means that the limit is infinity. 

 

 

Your textbook will likely have many examples for you to try.  After you have been doing these 

problems for a while, you will notice a pattern:  

1. If the highest power of x on the top is smaller than the highest power of x on the 

bottom, the function will always approach 0 as x→∞.  

2. If the leading term on the top has the highest power, the function will approach positive 

or negative infinity.   

3. If the highest powers of x on the top and bottom are equal, the function approaches a 

definite number which is determined by the coefficients of the leading terms.  

 

 

 

 

Trigonometric Limits 
 

 

    lim
x→0

 
sin x

x
 = 1 

 

 

 

Since there are not really that many different types of limit problems, your course may use a 

special trigonometry limit as well.  Consider y = 
sin x

x
.  Zero is not in the domain of this function, 

but as it turns out lim
x→0

sin x

x
 is quite important because it is used to show a special relationship 
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between the sine and the cosine.  The graph of the function y = 
sin x

x
 is shown below, along with 

y = sin x (the red line).  You can see that the limit of 
sin x

x
 is 1 as x approaches zero: 

 

 

 

 

There is just an infinitely tiny hole at x = 0 that you can’t see in the picture.  You can also create 

a table of function values for smaller and smaller values of x to see that the function 

approaches 1 as you get closer and closer to x = 0.  Introducing the special limit lim
x→0

sin x

x
 = 1 at 

this point opens up the possibility of making you review your trigonometry.  You may be asked 

to rearrange various expressions so you can take advantage of this limit to solve other 

trigonometric limits.  

 

 

  

Example 

Find lim
x→0

tan x

x
. 

Hopefully you will remember that the tangent is the sine divided by the cosine: 

lim
x→0

tan x

x
 = lim

x→0

sin x

cos x

x
 = lim

x→0

sin x

cos x
 ÷ x = lim

x→0

sin x

cos x
 ∙  

1

x
 = lim

x→0

sin x

xcos x
   

Because you know the limit of 
sin x

x
 as x goes to zero, you can solve this by rearranging:  
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lim
x→0

sin x

xcos x
  = lim

x→0
(

sin x

x
 ∙  

1

cos x
)   

The limit of a product is the product of the limits.  For  lim
x→0

sin x

x
 ∙  

1

cos x
 , write  

lim
x→0

sin x

x
 · lim

x→0

1

cos x
  

Now you can substitute the values:  1 ∙  
1

cos 0
 = 1 ∙ 

1

1
 = 1.    

So, lim
x→0

tan x

x
 = 1 

 

Average Rate of Change  
 

 

    The average rate of change is 
y2− y1

x2−x1
 , which is the same as 

f(x2)−f(x1)

x2−x1
 

 

 

Before you get to derivatives, your calculus course will probably prepare you by having you 

consider an average rate of change.  A simple way to understand this is by looking at speed.  

Speed measures the change in position of an object over time.  If a car starts at point A, and 2 

hours later it is at point B which is 130 miles away from point A, we say that the average speed 

of the car is 65 miles per hour.  It doesn’t matter if the car is sometimes going faster or slower 

than 65 miles per hour, or even stopped at a light.  All we are interested in here is the average 

speed.  That means all you need is the starting position and time, and the end position and 

time.  Then you divide the net change in position by the elapsed time. 

You can do the same thing with a function.  If the y-value of a function is 10 at x = 0, and 25 at  

x = 3, then the net change in the function over the interval is 25 – 10 or 15.  Divide that by the 

length of the interval, 3 – 0 or 3, to get an average rate of change of 5.   

You may see questions about the average rate of change on an exam.  Remember that the 

answer is usually easy to find. 
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The Derivative measures the instantaneous rate of change, by taking an infinitely small change 
in the y-value (dy) and dividing it by the infinitely small change in the x-value (dx). 
 
The Derivative is the slope of the tangent line.  It is positive when the function is increasing, and 
negative when the function is decreasing. 
 

 

 

                             

Isaac Newton        Gottfried Leibniz 

 

Non-constant change was nearly impossible for scientists to deal with until Isaac Newton used 

calculus to determine the speed of objects that accelerate or decelerate.  This was a major 

breakthrough, which was also achieved independently by German philosopher and 

mathematician Gottfried Leibniz a little later.  A controversy over who discovered calculus first, 

Newton or Leibniz, quickly became a matter of national pride as educated people throughout 

Britain and Europe realized the importance of this new method.  Calculus applies not only to 

speed, but to all kinds of change. 

(Most of this section has been written by Kamex, whose enthusiasm for the subject I can’t quite 

match.) 
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Speed is defined as how far an object travels in an amount of time (like miles per hour).  To find 

it, take two points and divide the distance by the time that it takes the object to get from point 

A to point B.  But an object’s speed isn’t always the same; it can change.  Things stop, start, 

slow down, and speed up, so here is the big question:  what is an object’s speed at a certain 

point in time? 

Imagine you had the power to stop time.  When time is stopped nothing moves.  That’s because 

you’re looking at a single instance in time, and in a single instance of time nothing moves.  A 

period of time is made up of a bunch of instances, so when you put these instances together, 

and in each instance nothing moves, then how is the object moving at all?   When Zeno, a 

Greek philosopher, first thought up this paradox, no one was able to explain it.  But now, with 

our new technology…we STILL can’t explain it.  

Not to worry though, there’s a way around this little difficulty.  It’s called the derivative.  Most 

things in our world don’t move at a constant speed, and the derivative helps us find the speed 

of an object at any given point in time. 

The first thing we need is an accurate description of the object’s motion.  This is where all that 

stuff about functions comes in.  If you look at the graph below, you can see that the distance at 

each point is twice the value of the time, or D = 2t.   
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We can use the function f(t) = 2t to describe the motion. 

Let’s figure out the speed that the object in the graph is traveling at.  We can tell that the speed 

is 2 units of distance per 1 unit of time.  We know this because we can take two points on the 

graph that are one unit of time apart:  point A, and point B.  The distance that the object travels 

between these two points in time is 2 units of distance.  Because the speed on this graph is all 

the same, pick a point, and the speed at that point will be 2.  That’s simple enough, but it gets 

more complicated than that.  Check out this graph: 

 

 

 

 

Hmm…okay.  In this graph, the speed is changing at certain points.  This means that there isn’t a 

single speed that the object is traveling at the whole time.  If we want to know the speed at 

some point, we have to just calculate the slope of the line at that particular point.  But what 

about THIS: 
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Ahhhh!!!  In this graph, there is no way to measure the speed because it is constantly 

increasing.  This is because it’s a curved line, and we can’t find the slope of a curved line, 

or…can we???   

First, let’s use a function to describe what is going on here.  In this case, the distance is the 

square of the time, meaning that if x is 3, y is 32.  If x is 12, y is 144.  The function is f(t) = t2, 

which you can also write as D = t2.  We can graph it just like we graph y = x2.  To calculate the 

speed along any section of the graph we need to find the slope just like we did before.  But any 

section we look at has a curved line, so it can’t be measured.  Now how can we find the slope?? 

If you put two dots on the line, there is a curve between them, but if the two dots are closer 

together, there is less of a curve between them.  The closer together you put them, the more 

accurate your measurement of the slope is going to be if you treat the middle part as a straight 

line, because the closer the points get, the less curvy the middle line is.  What if we make the 

two points infinitely close together, meaning that there is an infinitely small distance between 

them.  Wouldn’t that make the measurement infinitely accurate? 

The slope of a line is “rise over run”.  The rise is the y change and the run is the x change.  

(Remember the slope formula:  m =  
y2−y1

x2−x1
 ).  Here y is the distance D, and x is the time t, so the 

slope is the change in D divided by the change in t.  If the two points are infinitely close 

together, then the slope would be an infinitely small change in D divided by an infinitely small 

change in t.  Hey, wait!  That sounds familiar . 
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All we need to find the slope (the speed at a point in time) is the infinitely small difference of D, 

which is dD, divided by the infinitely small difference of t, which is dt.  So we are looking for  
dD

dt
.   

 

 

Notice that now that we have zoomed in infinitely far, the curve D = t2 looks like a straight line.  

Of course you should keep in mind that this is just a diagram, and nobody has ever seen what 

things really look like this close up.  What we do know is that when we calculate the slope, it 

will be accurate. 

Because we have a function that tells us how D and t are related, it is easy to find dD.   

D = t2, and the Power Rule says that dD = 2tdt.   

We need 
dD

dt
 so we want to divide both sides by dt.  Time increases at a nice steady rate, and it 

doesn’t dependent on any other variable.  Each infinitely small bit dt can be considered to be 

equal in size so that dt/dt = 1: 

 
dD

dt
 = 

2tdt

dt
  

dD

dt
 = 2t. 

That’s nice, but what does it mean?  Well, if 
dD

dt
 = 2t then at any point in time the speed of the 

object whose position is shown in the graph is equal to 2t.  If t is measured in hours, and D is 

measured in miles, then at time t = 2 hours the speed would be 2t or 4 miles per hour.  At time 
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t = 3 hours the speed would be 6 miles per hour, and so on.  Now we know how to find the 

instantaneous speed of an object that is speeding up or slowing down.   

What is also interesting here is that the two points we used to find the slope are so infinitely 

close together that they are really the same point.  That means that the line between them has 

now become a tangent line, which is a line that just touches a curve at one point.  Without 

calculus it is much more difficult to create such a line, and when Newton’s teacher Isaac Barrow 

first used calculus methods to find a tangent to a curve it was considered a great achievement. 

 

 

 

 

 

The infinitely small difference in one variable divided by the infinitely small difference in a 

related variable, like 
dD

dt
, is called a derivative.  The derivative is really amazing if you think 

about it carefully.  If A and B are really the same point, just where is that triangle with the 

curve, dD, and dt?? 
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The derivative represents how fast the top variable is changing compared to the change in the 

bottom variable.  In the case we just looked at, the derivative represents the rate of change of 

the distance relative to the change in time.  A more old-fashioned way of saying the same thing 

is that we look at the change in distance with respect to time.  A change in distance with time is 

what we call speed.  In this case the derivative represents speed.  The slope (rise over run) of 

the tangent line drawn to the curve represents how fast the position is changing at that point.   

 

Caution:   The derivative is the slope of the tangent line, not the line itself!   

 

Derivatives can be used to work with any kind of change.  They are useful in physics, 

engineering, theoretical chemistry, finance, software development, and many other 

applications.  Unfortunately these fields are now so specialized that the average person has 

difficulty appreciating the contributions that calculus has made, and is continuing to make, to 

science and technology. 

You will be using the derivative with functions.  What you will be asked to find is how much the 

y- value of a function is changing relative to the change in x, that is, you’ll be looking for 
dy

dx
.  

Even when the function graph is a curve, you’ll be able to determine this rate of change by 

using calculus.   

The x-value on a graph increases from left to right.  If you put your pencil on a point on a graph, 

and move to the right, the function is increasing if the graph is going up (the y-value is 



38 
 

increasing), and decreasing if the graph is going down.  Because the derivative of a function 

measures the rate of change of the y-value, it is positive when the function is increasing, and 

negative when the function is decreasing. 

 

 

Δ Notation for the Derivative 
 

 

  The derivative is a limit:   
dy

dx
 = lim

Δx→0
 
Δy

Δx
 

 

 

 

We can find many derivatives through differences, but today all of this work is done by using 

limits.  This explanation allows you to see how the derivative works, how it may change 

depending on the particular point you select, and how limits fit into this.   

In the previous section we saw how to determine how fast the function D = t2 is increasing at 

any given point.  Originally calculus was applied to motion, so people used the derivative to find 

how the speed of an object was changing over time.  However, calculus can be applied to any 

kind of change.  For any function f(x), we can measure how f(x) changes as x changes.  In the 

case of f(x) = x2, the value of the function increases as x increases.  When x is small f(x) 

increases slowly with each bit of increase in x, and as x gets larger the function value increases 

faster and faster with an increase in x.   

To find how fast the function is changing, we can draw the graph of y = x2 and place two points 

on it, point A and point B, connected by a line.   The slope of this line is the difference between 

the y coordinates of the points divided by the difference in the x coordinates.  That is, the slope 

is the change in y, called Δy, divided by the change in x, or Δx.  Note that Δy is a change in y, 

while dy refers to an infinitely small change in y.  The Δ notation is an older way to describe the 

derivative, but you’ll still see it in places (usually without any accompanying explanation!)  One 

reason math educators want to get rid of it is that students often think that Δx means Δ times x.  

That is not the case; Δx is one single quantity. 
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The closer point B is to point A the closer we are to seeing the rate of change of the function 

(the slope) exactly at point A.  The exact slope is found by taking the limit of the process that 

brings the two points closer and closer together.  Thanks to your introductory chapter on limits, 

you know how to use limits to find a function value at an awkward spot.  Here we will use a 

limit to find the value of the slope.  The two points we will be using are (x, x2), and a point just 

slightly to the right of that, (x + Δx, (x + Δx2)).  To find the slope we take the difference between 

the y coordinates and divide that by the difference in the x coordinates.  Then we imagine that 

these two points are closer and closer together.  The result that we want is the limit as Δx goes 

to zero ( lim
Δx→0

). 

The rate of change = the slope =  lim
Δx→0

Δy

Δx
 .  When the small changes Δy and Δx become infinitely 

small we call them dy and dx, so you can just write the limit as the ratio  
dy

dx
.   

dy

dx
 = lim

Δx→0
 
Δy

Δx
 = 

(x+Δx)2−x2

x+Δx−x
 = lim

Δx→0
 
x2+2xΔx+Δx2−x2

Δx
 = lim

Δx→0
 
2xΔx+Δx2

Δx
 = lim

Δx→0
 2x + Δx = 2x 

 

Notice that a division is done first, and then we can take the limit. 

When x = 1 the slope is 2, and when x = 2 the slope is 4. 

As you learned when studying Limits, there is a left-hand limit and a right-hand limit.  If you 

consider Δx to be a positive quantity, then what you are really doing in the calculations above is 

finding the right-hand limit.  x + Δx is a little to the right of x.  We will get the same limit, or 

derivative, if we start a little to the left of x, at x – Δx.  Now our two points are (x,x2) and  

(x – Δx,(x – Δx)2).  See if you can use these points along with some algebra to show that the 

derivative of y = x2 is 2x. 
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Function Notations for the Derivative 
 

 

Notations for the derivative are: 

 
dy

dx
 ,  f’(x) ,  f’, or y’.   

You also need to be able to recognize the derivative when it is written as a limit: 

f’(x) = lim
h→0

 
𝐟(𝐱+𝐡)−𝐟(𝐱)

𝐡
    or     f’(a) =    lim

x→a
 
𝐟(𝐱)−𝐟(𝐚)

𝐱−𝐚
 

 

 

The derivative is the rate of change of a function.  At first the derivative was just written as a 

ratio of differences (differentials).  For y = x2, dy = 2xdx, so 
dy

dx
 = 2x.  Later on people began to 

use f’(x) to indicate the derivative of a function like f(x) = x2, which makes sense because the 

derivative itself is also a function.  If the original function is written as y = x2, you can use y’ to 

indicate its derivative.  We say that f’(x) = 2x, or y’ = 2x. 

Again we will look at two points on the graph of y = x2, but now we will consider this as the 

graph of the function f(x) = x2, which looks more impressive than just calling it y = x2.  We will 

use the same method to find the exact rate of change of the function at some value of x, but 

now we’ll use a different notation.  The value of the function at x is f(x).  To get the slope of the 

tangent line at (x,f(x)), we will consider a point just slightly to the right of this, at (x+h, f(x+h)).  

The slope of the line between these two points is 
f(x+h)−f(x)

x+h−x
, which is the same as 

f(x+h)−f(x)

h
. 

The line between the two points is not a tangent line, but it will be when the two points are so 

close together that h = 0.  But wait, h can’t be 0 because we can’t divide by zero.  Well, just 

write it as a limit: 

f’(x) = lim
h→0

  
f(x+h)−f(x)

h
  

Now use the actual function, f(x) = x2: 

f’(x) = lim
h→0

 
f(x+h)−f(x)

h
 = lim

h→0

(x+h)
2

−x2

h
 = lim

h→0

x2+2xh+h
2

−x2

h
 = lim

h→0
 2x + h = 2x 
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This is an improvement over the Δ notation used in the previous section, because it emphasizes 

that we are working with a function, and it actually looks a bit simpler.  Note that h could be a 

negative value since the limit may be approached from either the right or the left and it is the 

same either way. 

Unfortunately, people couldn’t just leave well enough alone.   Here is an even more recent 

version of the same thing: 

Suppose we want to find the derivative at some point on the graph of the function f(x) = x2.  The 

x-value of this point could be 1, or 2, or say “a”.   So the point on the graph we are interested in 

is (a,f(a)), and we want the derivative there, which is f’(a).  To get a second point to use to 

calculate a slope we will take a generic point (x,f(x)) on the graph a little to the right of (a,f(a)).  

We would calculate the slope of the line between these points by writing  
f(x)−f(a)

x−a
 , in that 

order because we usually put the right point first.  The order is actually arbitrary and point 

(x,f(x)) could be to the left of (a,f(a)).  The limit can be approached from the right or the left, 

and it is the same either way.   

Just like we did before, we want to move these points infinitely close together so we can get 

the exact slope at a single point.  That means we want x – a to get smaller and smaller until the 

two points touch each other.  Once they do, x = a.  We look for the limit as x approaches a.   

First, we write that the slope at point (a,f(a)) is 

lim
x→a

 
f(x)−f(a)

x−a
 

For this function, f(x) = x2, that means that the slope at (a,f(a)) is 

f’(a) = lim
x→a

 
x2−a2

x − a
 

Now we can use a different trick to find the derivative:  the difference of two squares.  We get 

f’(a) = lim
x→a

 
(x+a)(x−a)

x − a
 = lim

x→a
 x + a = a + a = 2a   

At any point (a,a2) the rate of change of the function is 2a, so for any point (x, x2) the rate of 

change is 2x.  This is the same conclusion we reached twice before.  However, this is obviously 

better because we got to use the difference of two squares . 

 

You may encounter still more different ways to write the derivative.  I would highly recommend 
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that you pick your own “favorite” way so that you can feel comfortable when a problem is 

presented that way, and superior when it is not, because your way is better. 

You should learn to write the derivative as 
dy

dx
, f’(x), f’, or y’.  You also need to be able to 

recognize the derivative when it is written as a limit: 

f’(x) = lim
h→0

 
f(x+h)−f(x)

h
 

f’(a) = lim
x→a

 
f(x)−f(a)

x−a
 

On tests, derivatives may look like lim
h→0

 
sin(

π

2
+h)−sin(

π

2
)

h
, or even like this:   

lim
x→2

 
arctan(2x)−arctan(4)

x−2
. 

It is very important that you recognize these expressions as derivatives, and do not try to solve 

them as you did in the chapter on limits.  Even if you can solve them as a limit, you’ll waste 

valuable test time. 

 

 

 

 

With Respect to x… 
 

 

We usually consider the change in the value of a function relative to the change in x:  the 

derivative is 
dy

dx
.  If y is a function of the time t, then the derivative is 

dy

dt
. 

 

 

 

Your calculus instructor (or textbook) may use the phrase “with respect to x” a lot, so it is 

important that you really understand what it means.   No actual respect for the variable x is 
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involved here.  For any given function of x, the output changes depending on the change in x.   

Look at the graph below, and try to describe how y is changing as you move along the line. 

 

 
 

 

Your description should contain something like “y increases by 3 units as x increases by one 

unit”.  Because this is a constant change you don’t actually need calculus, but calculus does 

work just as well here.  This is the graph of y = 3x.  We say that the derivative of y, with respect 

to x, is 3.  By this we mean 3 units of increase per unit increase in x.  This constant rate of 

change doesn’t depend on the value of x.  It is the same everywhere along the graph.  We write 

the derivative as  
dy

dx
 = 3, which shows that we mean that the change in y divided by the change 

in x is 3.  This notation emphasizes that the derivative is a ratio.  The derivative is the slope of 

the tangent line, but here the tangent line is just the function itself, and the slope is 3. 

Notice that this will work for any linear function.  If y = ax, then 
dy

dx
 = a. 
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Now let’s take the derivative with respect to x of the constant function y = 10.  How much does 

y change as x increases by 1 unit?  The answer is that it doesn’t change at all.  The derivative 
dy

dx
  is 0.   If y = c, then 

dy

dx
 = 0. 

 

How Does a Circle Grow? 
 

 

For A = πr2,  
dA

dr
 = 2πr.  The rate of change of the area is equal to the circumference. 

 

 

 

Now let’s look at a real-life derivative.   

The area of a circle is given by A = πr2. 

As the radius increases, so does the area.  We want to know how much the area increases per 

unit increase in the radius.  As it turns out, when the radius is small the area grows more slowly 

than when the radius is larger.  Let’s take a circle with a radius of length r.  The area of this 

circle is πr2.  Now increase the radius just a little bit to r + h.  Then the area is π(r + h)2.  The 

rate of increase of the area per unit increase in r is given by the change in the area divided by 

the change in the radius.  We can think of a circle growing by adding an extremely thin ring 

around its circumference.  The area of this thin ring is the area of the new circle minus the area 

of the old circle:  π(r + h)2  −  πr2.  We divide by the change in the radius:  r + h − r. 

 
π(r+h)2 − πr2

r+h−r
 = 

πr2+2πrh+πh2 − πr2

h
 = 

2πrh+πh2

h
 = 2πr + πh.   
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The limit of this as h goes to zero is 2πr.  The derivative of the area with respect to the radius,  
dA

dr
, is 2πr, which is the circumference.  If you think of the radius as constantly increasing, you 

can see how the area of the circle increases.  When r is one unit, like maybe 1 inch, the area 

grows at a rate of 2π ∙ 1, which is about 6.28.  The area is increasing by 6.28 square inches per 

inch of radius.  By the time the radius is 2 inches, the area of the circle is growing by 2π ∙ 2, or 

about 12.56 square inches per unit of radius.  The area increases faster and faster. 

 

   

 

When Not to Use Derivatives 
 

 

The function must be continuous at the given point:  Check for an asymptote, and make sure 

that f(x) has the same value whether you approach from the left or from the right. 

The function must be differentiable at the given point:  Check that the derivative has the same 

value whether you approach from the left or from the right. 

A function may have a vertical tangent line (no derivative) at one or more points. 
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1.  Discontinuity 

By definition, a function that is not continuous at a point has no derivative there.  That is rather 

obvious for a jump discontinuity, which creates a big gap at that point.  If you have a piece-wise 

defined function but no graph is supplied, you should first check if both parts have the same 

function value at the point you want to take the derivative at.  That will probably mean 

inserting an x-value just outside the stated limit for one of the pieces Please note that if your 

function does turn out to be continuous at the given point, it will not necessarily have a 

derivative there (see next section). 

Sometimes the Limit of the function value at a particular point does not exist because the 

function value keeps getting larger and larger or smaller and smaller near this point.  That is an 

infinite discontinuity.  If you tried to draw a tangent line at such a point, you would see that it 

would be vertical.   

If a function has a removable discontinuity at a point, then by definition it has no derivative at 

that point, even though we can use limits to find the function value.  The derivative is the limit 

as h goes to zero of 
f(x+h)−f(x)

h
, so if f(x) doesn’t exist that is a nonstarter.  Also, you would run 

afoul of the definition of “tangent line” since the line wouldn’t be touching the curve at a point.   

A function like f(x) = 
(x−2)(x+5)2

x−2
 has no derivative at x = 2.  That value for x is not in the domain 

of the function.  Remove the discontinuity first so you can just find the derivative in the usual 

way. 

 

2.  Sudden Change in Direction 

Some functions contain sharp corners or cusps.  An example would be f(x) = |x|.  For a linear 

function, the slope of the tangent line is just the function line itself.  If you approach x = 0 from 

the right, the slope is 1, while if you approach x = 0 from the left the slope is -1.  This tells you 

that x = 0 is not a good spot to try to find the derivative.  Check that the derivative is the same 

whether you approach the given point from the left or from the right. 

 

3.  Vertical Tangent 

From your study of limits, you would have seen that it is not always possible to find the slope of 

a tangent line.  If a continuous function has a vertical tangent line at some point then there is 

no slope.   Vertical lines have no slope (slope = rise/run, and the run is 0).  The function has no 

derivative at this particular point.   
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Basic rules for derivatives: 

1. The derivative of a single constant is 0.  If y = 5, then 
dy

dx
 = 0 

2. The derivative of a linear function is a constant.  If y = 4x, then 
dy

dx
 = 4. 

3. If the function has parts that are separated by a + or – sign, take the derivative of each 

part separately and add or subtract the individual derivatives.   

 

Example 

Find the derivative of the function y = 7x – 10. 

Derivatives can just be added or subtracted.  The derivative of 7x is 7, and the derivative of 10 is 

0.  Subtract the two derivatives:  
dy

dx
 = 7 – 0 = 7. 

 

 

The Power Rule 
 

 

  For y = xn,  
dy

dx
 = nxn-1 

 

 

The Power Rule says that if y = xn, then 
dy

dx
 = nxn-1.  So, if y = x3, then 

dy

dx
 = 3x2.  If there is a 

constant in front of x, it stays there:  for y = 5x3, 
dy

dx
 = 15x2. 
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The Power Rule works for negative and fractional exponents too.  To take advantage of this, 

replace any radicals with fractional exponents.   

 

Example 

If y = √x, find 
dy

dx
. 

Rewrite √x as y = x
1

2.  Now apply the Power Rule:  
dy

dx
 = 

1

2
x−

1

2.   

Remember that a negative exponent means 1 divided by the variable to that power.  x−
1

2 means 
1

x
1
2

 which is 
1

√x
.  And 

1

2
 ∙ 

1

√x
 = 

1

2√x
. 

 

Because of the Power Rule, you’ll be working with exponents a lot, and especially with 

fractional exponents.  Although fractional exponents may look intimidating, they still have to 

follow the same rules as regular exponents.  Those rules are shown in the box below.  If that 

doesn’t look familiar, please check out “Reference:  Exponents” in the first chapter. 

 

x3 ∙ x4 = (x ∙ x ∙ x) ∙ (x ∙ x ∙ x ∙ x ) = x7.    General rule:   xa · xb = xa+b  

x5

x3 = 
x ∙ x ∙ x ∙ x ∙ x

x ∙ x ∙ x 
 = x2.        

xa

xb = xa-b  

x3

x5 = x3 – 5 = x-2 = 
x ∙ x ∙ x ∙1

x ∙ x ∙ x ∙ x ∙ x
 = 

1

x ∙ x
 = 

1

x2
.       x-a =  

1

xa  (x ≠ 0) 

x3

x3 = x3 – 3 = x0 = 1.          x0 = 1  (x ≠ 0) 

(x4)3 = x4 · x4 · x4.           (xa)b = xab 

(xy)3 = xy · xy · xy = x3y3.            (xy)a = xaya 

x
1

3 ∙ x
1

3 ∙ x
1

3 = x1, so  x
1

3 = √x
3      x

1

n = √x
n

 



49 
 

x
2

3 = (x2)
1

3 or (x
1

3)
2

        x
a

n = √xan
 or ( √x

n
)

a
 

 

 

 

The Chain Rule 

 
 

Take the derivative of the outer function, and multiply it by the derivative of the inner function. 

 

If h(x) = f(g(x)), then h’(x) = f’(g(x)) ∙ g’(x).     

 

 

 

Most students find the Chain Rule rather intuitive.  To see how it works, Let’s find the 

derivative of something that we could easily manage without the Chain Rule: 

Example 

Find the derivative of y = (3x)2 

Because we can square this first, to get 9x2, we already know that the derivative should be 18x2. 

To apply the chain rule, think of (3x)2 as an “outer” function, y = (u)2, and an “inner” function,  

u = 3x. 

First, take the derivative of u2:   
dy

du
 = 2u        

Since u is really 3x, 
dy

du
 = 2 (3x)        

Next, take the derivative of the inner function: 

du

dx
 = 3.   
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Now we have 
dy

du
 and 

du

dx
, but what we really want is 

dy

dx
.  Just multiply the two derivatives: 

dy

dx
 = 

dy

du
 ∙ 

du

dx
 

 
dy

dx
  = 2 (3x) ∙ 3 

dy

dx
  = 18x 

When you multiply the two derivatives like this, du cancels out.  This is the Chain Rule, and it is 

quite easy to use.  Here you can see how the derivative is a real ratio that expresses the change 

in one quantity relative to the change in another quantity. 

So, for y = (3x)2 the derivative is 2(3x) ∙ 3, which is 18x. 

  

Example  

Find the derivative of y = (x2 + 5)3. 

Here you wouldn’t want to go to the trouble of actually raising the whole expression to the 

third power, although you could do that.  Let’s think of this as two functions: 

The “outer” function is  y = (…)3, and the “inner” function is x2 + 5    

The derivative of the outer function is 3(x2 + 5)2, and the derivative of the inner function is  

2x: 

dy

dx
 = 3(x2 + 5x)2 ∙ (2x) = 6x(x2 + 5x)2 

 

Example  

Find the derivative of h(x) = f(4x) 

Things often look more confusing when they are phrased in an abstract way.  Of course we are 

still free to change this abstract problem to something more specific.  Instead of h(x) I’ll write y, 

just because it looks simpler.  Now I’ll make up some simple random function to represent f(x), 

like f(x) = x2.  This is the “outer” function.  Inside the parentheses we see another function:  4x.  

This doesn’t need to have a name, although you could call it g(x).  Now I can write my sample 

function as y = (4x)2.  To take the derivative of that, I would write y’ = 2(4x) ∙ 4. 
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For h(x) = f(4x), we can write the derivative like this: 

h’(x) = f’(4x) ∙ 4 

h’(x) = 4f’(4x) 

 

 

 

The Product Rule 
 

 

The derivative of the product of two functions is the derivative of the first, multiplied by the 

second, plus the first multiplied by the derivative of the second.  

If y = f(x) ∙ g(x), then y’ = f’(x) ∙ g(x) + f(x) ∙ g’(x) 

 

 

 

The Product Rule may seem a bit mysterious.  Why can’t we just take the derivatives of each 

part and multiply them?  Actually, the original idea of differences (differentials) shows quite 

clearly why and how the product rule works. 

 

A line with length x grows by adding infinitely tiny amounts dx to the length: 

 

 

 

A square grows by adding infinitely tiny amounts dx to both sides:   
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The infinitely tiny change in the area is dA.  The square grows by adding two infinitely thin strips 

to two of its sides.  The increase in area is the area of those strips.  The width of each strip is dx.  

The length of one side of the strip is x, and on the other side it is x + dx because one of the ends 

of the strip is slanted.  If we claim that x + dx = x, we can simply use x as the length.  The area of 

each strip is xdx, which means that dA = 2xdx. 

To get the derivative, just divide both sides by dx: 

dA

dx
 = 2x 

So, if y = x2, then 
dy

dx
 = 2x 

 

Now let’s see how a rectangle grows when both of the sides are changing.  That is slightly more 

complex because the length is different from the width.  We’ll call the area of the rectangle y.  

The area is the product of the sides, which we will call u and v.  y = uv: 
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Let u increase by an infinitely small amount du, and v by an infinitely small amount dv (du and 

dv may be different in size): 

 

 

This only shows the actual change in y, which is dy.  dy is the sum of the red strip and the blue 

strip:  dy = udv + vdu.     

To get a derivative, which is a rate of change, we need to decide what to measure that change 

by, that is, we need the rate of change of y with respect to something.  Both u and v could 

change with time, so you can figure out how the area y is changing over time.  More commonly, 
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u and v will both be functions of x.  They both change as x changes, and so does the area.  The 

derivative will be the change relative to the change in x.  An infinitely tiny change in x is called 

dx.  If dy = udv + vdu, then we can get the derivative dy/dx by dividing both sides of the basic 

product rule equation by dx: 

dy

dx
 = u 

dv

dx
 + v 

du

dx
 

As you will see when you study the quotient rule, the product rule is best turned around:  

dy

dx
 = 

du

dx
 v + u 

dv

dx
 

Read it as: “The derivative of the first function times the second, plus the first function times 

the derivative of the second.”   

In shorthand notation it looks a little simpler:  y’ = u’v + v’u 

Because u and v are functions of x, the product rule is often written like this: 

If y = f(x) ∙ g(x), then y’ = f’(x) ∙ g(x) + f(x) ∙ g’(x) 

 

Or use the shorter form:  y’ = f’g + fg’ 

 

Example 

y = 5x(x2 + 2), what is the derivative, 
dy

dx
 ? 

Here the first function is 5x, and the derivative of that is 5.   

The second function is x2 + 2, so multiply the derivative of the first function by the second 

function to get 5(x2 + 2) 

Now add the derivative of the second function multiplied by the first.  The derivative of x2 + 2 is 

2x, which should be multiplied by 5x. 

dy

dx
 = 5(x2 + 2) + 5x · 2x  

dy

dx
 = 5x2 + 10 + 10x2 
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dy

dx
 = 15x2 + 10 

If we are correct, this derivative should be the same as the one we get by multiplying first and 

then taking the derivative: 

y = 5x(x2 + 2) = 5x3 + 10x 

dy

dx
 = 15x2 + 10, and yes, it is the same.   

 

A product may involve a constant, as in y = 3x.  Do we have to use the Product Rule here?  No, 

we don’t need to.  Remember that y = 3x is a straight line, and the derivative (the change in y 

relative to the change in x) is just the slope, 3.  You can also look at that in a different way: 

The area of the rectangle below is y, which is 3x.  If x grows by an infinitely small amount dx, the 

area of the rectangle will grow by an infinitely thin strip along one side.  That strip is shown as a 

blue line in the picture below: 

 
 

The area of the thin blue strip is the width times the length, or dx times 3.  Notice that it is only 

x that changes, not 3.  dy = 3dx.  Divide both sides by dx to get 
dy

dx
 = 3. 

The Product Rule may not be necessary here, but it still works.  Let’s try to find the difference of 

3x by using the Product Rule.   

If y = uv, then y’ = u’v + v’u 

Here u will be 3, and v will be x.  Because 3 is a constant, 
du

dx
 will be zero.  

dv

dx
 is 1, because the 

derivative of x is 1.  That last part should make sense to you because the change in x relative to 

the change in x has to be 1. 
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y = 3x 

y’ = 0 ∙ x + 1 ∙ 3 

y’ = 3 

Normally we only use the Product Rule for situations where both u and v are changing, as in the 

previous example.  This also tells us that for y = 5x(x2 + 2), we could just take the derivative of 

x(x2 + 2) and multiply the result by 5. 

 

 

 

 

 

 

The Quotient Rule 
 

 

If y = 
f(x)

g(x)
  then y’ = 

f′(x)∙ g(x)− f(x) ∙ g′(x)

g(x)2
     

 

 

 

Let’s see what happens to the change in y when there is a quotient instead of a product, like 

maybe y = 
5x

x2+ 2
.   

It is not difficult to rewrite this so that you can use the Product Rule and the Chain Rule:   

y = 5x(x2 + 2)-2.  However, there is also a Quotient Rule that you can use to find the derivative 

when there is some function u divided by some other function v.   

For y = 
u

v
, where u and v are functions of x, you can write y = u ∙ 

1

v
.  The infinitely tiny change in y, 

dy, can be expressed in terms of the infinitely tiny change in u and the infinitely tiny change in 
1

v
 

by using the product rule.  Since 
1

v
 can be written as v-1, its difference is -v-2dv, or - 

1

v2
dv.  As v 
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increases by an infinitely tiny bit dv, 
1

v
 decreases by 

dv

v2
.  u just increases by du, as shown in the 

picture below: 

 

 

 

As both u and v increase, the total change in the rectangle is 
1

v
 ∙ du + u ∙ – 

dv

v2
, which is the same 

as 
du

v
 – 

udv

v2
.  That’s a bit ugly, but we can put it over a common denominator.  Multiply 

du

v
 by 

v

v
 

to change it:    
v

v
 ∙ 

du

v
 = 

vdu

v2
.   

vdu

v2  – 
udv

v2  
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Put that all together to find that dy, the difference of 
u

v
, is 

vdu − udv

v2
.  This is the original 

Quotient Rule. 

To get the derivative, divide both sides by dx.  That is the same as multiplying everything by 
1

dx
: 

dy

dx
 = 

vdu − udv 

dxv2
 

That’s good, but we want to be able to see this in terms of the derivative of the functions u and 

v.  That is, we want to see 
du

dx
 and 

dv

dx
 in our formula.  To make that happen, divide both the top 

and bottom of the fraction by dx, which makes dx cancel out on the bottom: 

dy

dx
 = 

v 
du

dx
 − u 

dv

dx

v2  

Using the simpler ’ notation for the derivative (u’ instead of 
du

dx
) the quotient rule looks like this: 

y’ = 
𝐮′𝐯 − 𝐮𝐯′

𝐯𝟐
 

Or, in function notation:  If y = 
f(x)

g(x)
  then y’ = 

f′(x)∙ g(x)− f(x) ∙ g′(x)

g(x)2
 

Take the derivative of the top function multiplied by the bottom function, subtract the top 

function multiplied by the derivative of the bottom function, and divide the whole thing by the 

square of the bottom function. 

Using the Quotient Rule is not actually difficult, but it tends to get messy so you can make 

mistakes.  Simplifying the resulting derivative can be quite time-consuming and error-prone.   

Survival Tip:  Practice with some easy problems first before trying the harder ones. 

  

Example 

y = 
5x

x2+ 2
.  Find the derivative by using the Quotient Rule. 

As we said, we can call the top function u and the bottom function v.  The derivative of the top 

function, 5x, is just 5.  The derivative of the bottom function, x2 + 2, is 2x.  Now fill in the 

formula: 
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y’ =
u′v −u v′

v2
 

y’ = 
5(x2+2)−5x(2x)

(x2+2)2
 

y’ = 
5x2+10−10x2

(x2+2)2
 = 

−5x2+10

(x2+2)2
 

 

Finding a Tangent Line 
 

 
y – y1 = m(x – x1), where (x1, y1) is the given point, and m is the derivative at x1. 
 
y1 may not be supplied, but can be found from the given function by using x1. 
 

 

 

A problem may ask you to find a tangent line to a curve at a particular point.  Let’s reword that 

as “create a tangent line to a curve”, because it sounds more constructive and puts you in 

control.  

Creating a tangent line is not hard at all, but once your paper is cluttered up with derivatives it 

is easy lose track of what you are doing.  Make the tangent line first, before you do any 

calculus. 

From your study of algebra and geometry, you already know how to create the equation of a 

line that passes through a given point.  All you need is one point and the slope.  As you may 

remember, straight lines can always be described by the equation y = mx + b.  This equation will 

hold for any point on the line, so it will also work for the point given in the problem.  Let’s call 

that point (x1, y1).  Now we have: 

y = mx + b 

y1 = mx1 + b 

Subtract the second equation from the first, to eliminate the unknown b: 

y – y1 = mx – mx1 
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Factor out m to get the point-slope form of the equation: 

y – y1 = m(x – x1) 

This is called the point-slope form because all you need to do is plug in a point and a slope. 

First, find the point and plug it in.  Quite possibly your problem will only give you the x-

coordinate of the point.  If you haven’t covered your paper with a pile of calculus that contains 

multiple x’s and y’s, the y-coordinate will be easy to find.  Just plug x into the equation of the 

function and get y.  Then take your point and put it into the point-slope form of the line.  For 

example, if your point is (5, 7), then the line will look like this: 

y – 7 = m(x – 5) 

There, that just about does it.  All you need now is the slope m.  Here is where you start using 

calculus.  The derivative gives you the slope of the tangent line, for any value of x.  Once you 

have the derivative, make sure to use the right value of x, which is 5 in this case, to get a 

numerical value for the slope.  That number is m.  Plug it into the point-slope form.  Other 

than rearranging it a bit to make it look pretty, you’re done.  When you are finished, use a 

graphing program or calculator to draw both the original function and the tangent line.  You 

may not be able to see the exact point where they touch, but it should look about right. 

 

Example   

Create the tangent line to the curve y = x2 + 2 at x = 4. 

When x = 4, y = 42 + 2 = 18.  The point is (4, 18).   

Put the point into the point-slope form equation for the line: 

y – y1 = m(x – x1) 

y – 18 = m(x – 4) 

Now start calculus.  Find the derivative of y = x2 + 2, which is 2x + 0, or simply 2x.  That tells you 

that the slope of the tangent line is 2x, for any value of x.  At the point where we want the 

tangent line to appear x is 4, so the slope of the tangent will be 8.  Stick that into your equation:   

y – 18 = m(x – 4) 

y – 18 = 8(x – 4) 

That’s it, but you can make it look nicer: 



62 
 

y – 18 = 8x – 32 

y = 8x – 14 

 

 

Example 

A line that is tangent to the curve y = x2 – 4x + 1 has a slope of 2.  Find the point of 

tangency. 

The point of tangency is where the line just touches the curve.  The slope of the line is 

determined by the derivative of the function at that point.  First find the general derivative: 

dy

dx
 = 2x – 4 

At some point, the value of the derivative (the slope of the line) will be 2: 

2x – 4 = 2 

Solve that to get x = 3.  To find the y value, look at the original curve x2 – 4x + 1.  When x is 3, y 

is -2, so the point of tangency is (3, -2).   

 

Linearization and Linear Approximation 
 

 
First, create a tangent line at the closest known point:  y – y1 = m(x – x1). 
 
Use the derivative at that point to find the slope m. 
 
Use your tangent line to find the approximate y value you need. 
 

 

 

As we said earlier, mathematicians are happy to be able to find tangent lines.  One of the things 

they can do with these tangent lines is to find the approximate value of a function at a point 

where it is otherwise difficult to find such a value.  Although we now have calculators and 
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computers that can do this faster, it is still useful in some situations.  What we will do to 

estimate the function value at a particular point is to draw a tangent line at a convenient 

nearby point.  This tangent line will be very close to the function curve for the point we need.  

Instead of finding the function value at that point, which is hard, we simply find the y-value of 

the tangent line at that point, which is easy.  Look at the example below to see how it works: 

 

Example 

Find √3.9 using linear approximation.  Compare your result with the value obtained by 

using a calculator. 

The closest x value for which it is easy to calculate a square root is x = 4.  We draw a tangent 

line to the curve y = √x at the point (4,2), marked A in the picture below.  The tangent line 

doesn’t diverge far from the curve when x = 3.9, so we draw point B on the tangent line here, 

very close to the point  

(3.9, √3.9) on the curve.  The square root of 3.9 is hard to calculate, but the y value of point B is 

very easy to find because the tangent line will have a simple linear equation.  The equation of 

the tangent line is called the linearization of the function f(x) = √x.  The linearization is different 

at every point x along the curve.  
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below is a close-up view of the same situation, showing that point B is located on the tangent 

line, while point A is located both on the curve and on the tangent line (the tangent line 

touches the curve at point A).  The green line represents the size of the error we will make by 

using the y-value of point B to estimate the y value of the function.  The error will be larger 

when B is further away from A.  Also notice that we are overestimating the value of √3.9 here 

because the sample curve is concave down.  If we use this same procedure with a curve that is 

concave up our estimate would be below the actual value. 

 

 

 

Now all you need to do is construct the tangent line.  Make the line before doing any calculus.  

Start with the general equation y – y1 = m(x – x1), where m is the slope.  Plug in the point of 

tangency, which is point A, (4, 2).  y – 2 = m(x – 4).  There, we have a line.  All we need now is 

the slope, and for that we use calculus. 

Remember that the slope of the tangent line will be the derivative of the function at that point.  

To find the derivative of y = √x, rewrite it as y = x1/2.  We see that  
dy

dx
 =  

1

2
 x- 1/2.  Since x-1/2 = 

1

x
1
2

 = 

1

√x
 , we write  

1

2
 x -1/2 as  

1

2√x
. 

dy

dx
 = 

1

2√x
 , so when x = 4 we get  

dy

dx
 = 

1

4
.  The slope of the tangent line is 

1

4
.   
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Substitute that into the formula: 

y – 2 = 
1

4
 (x – 4).  This is the equation of the tangent line, and since the x we want is very close to 

4 we won’t bother to rewrite this equation in the form y = mx + b.  Instead we can use it just as 

it is, since it gives the relationship between y and x for any point on the tangent line.  To get 

point B we need y when x = 3.9, so put that into the equation: 

y – 2 = 
1

4
 (3.9 – 4) 

y – 2 = 
1

4
 (-.1) 

y – 2 = - .025 

y = 2 - .025 = 1.975.    

Now we have the coordinates of point B, (3.9, 1.975) on the tangent line, and point B is really 

close to the point (3.9,√3.9) on the function curve. 

It should come as no surprise that the y value of point B, 1.975, is very close to the answer you 

get from a calculator for √3.9.  It is just slightly larger than the actual value because the tangent 

line is just a little bit above the curve. 

You can see that since we expect x and x1 to be close together in this type of problem, the form 

y – y1 = m(x – x1) has the advantage of making our calculation easier.  However, you can do this 

any way you prefer, so if you like to use y = mx + b that works too. 

 

 

Derivative Graphs 
 

 
The derivative of a function is also a function.  The derivative function describes how the 
original function is changing. 
 
Make sure you can relate the graph of the derivative to the graph of the original function. 
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We have seen that the derivative of the function y = x2 is 2x, which means that the actual value 

of the derivative depends on the size of x.  The derivative is different at every point on the 

curve described by y = x2, and at every point the derivative describes how fast the curve is 

changing as x changes.  The image below shows the graph of the parabola y = x2.  You can see 

its derivative as the slope of the tangent lines drawn to the curve at different points: 

 

 

 

At point A, the y-value of the function is decreasing as x increases, and it is actually decreasing 

quite rapidly.  This means that the derivative is negative, and that it has a large negative value.  

You can see that the slope of the tangent line at point A is negative, and that the slope is quite 

steep.  The x-value at point A is -2, so the derivative (the slope of the tangent line) is -4.  By the 

time we reach point B, the function is still decreasing, but not as rapidly.  The derivative is still 

negative, but the slope of the tangent line has a smaller negative value, which is -2.  Once we 

pass point C, the function begins to increase so its derivative is positive.  As x gets larger, the 

function increases faster and faster, so the derivative is also getting larger.  Notice that the 

derivative is zero at point C because the function stops decreasing and starts increasing.  This is 

the point where the derivative actually changes from being negative to being positive. The 

tangent line is horizontal (it has a slope of zero).  At point E the slope of the tangent line is 4. 

The derivative is also a function, and we can graph it.  This derivative function is y = 2x, which is 

just a straight line: 
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Wherever the derivative is negative, the original function is decreasing, and where the 

derivative is positive the original function is increasing.  At point A, the original function is 

decreasing faster than at point B.  At point C, the original function reaches its minimum value. 

You may want to spend a bit of time studying these last two graphs to make sure you 

understand the relationship between them, because that can be rather confusing at first. 

 

Derivatives of Trigonometric Functions 
 

 

Trig Function  Derivative 

sin x   cos x 

cos x   -sin x 

tan x   sec2x 

cot x   -csc2x 
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sec x   sec x tan x 

csc x   -csc x cot x 

 

 

Since the derivative is really the rate of change of a function, we can look at a function graph 

and estimate the value of the derivative at any given point.  Consider the sine function, f(x) = 

sin(x).  The amazing thing is that there is in fact a function that perfectly describes the 

derivative of the sine function at every point.  It gives the exact value of the slope of the 

tangent line for every value of x.  This function is f(x) = cos(x).  Graph this function on the same 

screen as the sine function.  Study both functions carefully until you can see that the cosine 

function is really the derivative of the sine function.  

 

  

 

At point A, the sine function has reached its maximum value of 1.  The tangent line here would 

be horizontal, so the slope would be zero.  The cosine function does in fact have a value of 0 at 

the same value of x.  At point B, the sine function is decreasing at its most rapid rate.  The 

tangent line would have a slope of -1, which is also the value of the cosine function here.  When 

we reach point C, the sine function is increasing, but it is doing so quite slowly.  

Correspondingly, the cosine function has a small positive value. 

Now we should take some time out to consider a very important point.  The sine and cosine 

functions that you are looking at are graphed in radians.  If you try to graph them in degrees, 

the picture changes.  You may think that you could just replace π radians by 180 degrees, but 

then what would you do with the scale on the y-axis?  From the unit circle, we know that a 

value of 1 for the sine or cosine corresponds to 1 radius of the unit circle.  There are 2π such 

radii in the circumference of the circle, and this is where we get the units we call radians.  If you 

make the scale on the y-axis correspond to a degree scale on the x-axis, the unit 1 suddenly 
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becomes very much smaller because 1 degree is very tiny.  The sine function really flattens out 

so that you can barely see it going up or down.  So does the cosine function.  Try it out by 

setting your calculator to degrees (use the MODE button) and graphing y = sin x and y = cos x.  

The functions are now so flat that you can’t even see them properly.  This also changes the 

slope relationship so that the value of the cosine function no longer corresponds to the slope of 

the sine function.  Once we start using degrees, the derivative of the sine is not equal to the 

cosine.  To experiment with this, you can graph the sine and cosine functions in degrees by 

using y = sin (pi*x/180) and y = cos (pi*x/180).  This makes the proper adjustment to the x-

values.  Note that the slope of the line tangent to the sine function is now the derivative of sin 

(πx/180), which is 
π

180
 cos (πx/180). 

If you plan to use your calculator for calculus, set it to radian mode right now! 

 

The fact that the cosine function is the derivative of the sine function also illustrates an 

important point:  the derivative is a function in itself.  As a result, we can take the derivative of 

a derivative, which is called the second derivative.  The second derivative is often written as 

f”(x).  If you study the sine and cosine graphs long enough, you might notice that we can draw a 

graph that represents the derivative of the cosine function.  This is actually the graph of  

f(x) = -sin(x).  Taking the derivative of this, we get f(x) = -cos(x).  The derivative of f(x) = -cos(x) is 

f(x) = sin(x), so then we are back where we started. 

 

 

 

Once you know that the derivative of sin(x) = cos(x), you will be expected to find the derivative 

of more complicated functions like y = sin(x2).  This looks like a good place to apply the chain 

rule, since there is an outer function sin(u), and an inner function u = x2:   

y = sin(u) 
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dy

du
 = cos(u) 

u = x2, so 
du

dx
 = 2x 

dy

dx
 = 

dy

du
 ∙ 

du

dx
 

dy

dx
 = cos(u) ∙ 2x 

du

dx
 = 2x cos(x2) 

 

Thanks to the quotient rule, it is relatively easy to find the derivative of the tangent function.  

The quotient rule says that for y = 
u

v
,  

dy

dx
 = 

v
du

dx
 − u

dv

dx

v2
 .  Here u is sin x and v is cos x.  Remember 

that the derivative of sin x is cos x, and the derivative of cos x is  – sin x. 

f(x) = tan x 

f(x) = 
sin x

cos x
  Now take the derivative: 

f’(x) = 
cos x cos x − (sin x ∙ − sin x)

(cos x)2
 

f’(x) = 
cos x cos x + sin x sin x

(cos x)2
 

(cos x)2 and (sin x)2 are normally written as cos2 x and sin2 x. 

f’(x) = 
cos2 x+ sin2 x 

cos2 x 
       

From trigonometry, you should remember that cos2 x +  sin2 x = 1: 

f’(x) = 
1

cos2 x 
 

Since 
1

cos x
 = sec x, the final form of the derivative is: 

f’(x) = sec2 x 
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You can see that the derivative of the tangent is the secant squared. 

 

 

Practice 

Show that the derivative of cot x is – csc2x.  Use the fact that  

 – sin2 x – cos2 x= - (cos2 x +  sin2 x) = - 1. 

 

 

Example 

Find lim
h→0

 
sin(

π

2
+h) − 1

h
. 

This limit is a derivative, and more specifically it is a derivative involving the function f(x) = sin x.  

If you write the derivative of this function in a general way, it looks like this: 

dy

dx
  = lim

h→0
  

f(x+h)−f(x)

h
 = lim

h→0
 
sin(x+h) −sin x

h
 

Notice that we are finding the infinitely small change in y by taking the value of the function at  

x + h, and then subtracting the function value at x.  When h is infinitely small, it is equal to dx, 

the infinitely tiny change in x. 

When you look at the problem, you see that there is no x.  Instead, this expression refers to the 

derivative of sin x at x = 
π

2
.  The derivative of sin x is cos x, and when x is 

π

2
 the value of the 

derivative is cos 
π

2
 = 0. 
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Maxima, Minima, and Optimization 
 

 

A maximum or minimum has to be located at a critical point:  f’(x) = 0 or f’(x) does not exist.  

Caution – a critical point may not be a minimum or maximum.  Use the First Derivative Test: 

If f’(x) changes from positive to negative there is a maximum. 

If f’(x) changes from negative to positive there is a minimum. 

 

No change on either side of the critical point means no minimum or maximum there. 

 

 

 

If you use a graphing calculator or graphing software it is often quite easy to find the maximum 

or minimum of a function.  Even if graphing calculators are not allowed for your course you can 

use them to check your work.  The purpose of this section is to find the maxima and minima of 

a function by looking at its derivative. 

As we saw earlier, when a function is increasing, its derivative is positive.  That makes sense, 

since the derivative measures the rate of change, which is positive when the function is 

increasing.  When the function is decreasing the derivative is negative.  The interesting thing is 

what happens in between.  If a function is increasing at first, and then starts to decrease, the 

point where the increase stops is a maximum value point.  This could be the function’s overall 

maximum, or it could be just a local maximum if the function starts to increase again 

somewhere else.  Just before a maximum value point, the derivative is positive, and just 

afterwards it is negative.   

If the function has a nice round top, the slope of the tangent line is actually zero right at the 

maximum point.  The derivative is zero there.   
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The same goes for a minimum point.  Here the function is decreasing at first, and then it starts 

to increase.  The derivative is negative at first, then zero at the minimum point, and then 

positive as the function increases again:  

 

 

Occasionally the graph of a function has a sharp point as a maximum or minimum, as in the 

case of the absolute value function f(x) = │x│.  If you graph this function, you’ll see that the 

minimum is a sharp point or “cusp” at x = 0.  Recall that we use the concept of a limit to create 

a tangent line.  Approaching zero from the right, the slope of the line is the limit:  lim
x→0

│x│− │0│

x−0
 = 

lim
x→0

│x│

x
    which is 1.  Approaching it from the left however, x is negative and the slope is -1.  
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Since we get a different result depending on whether we approach 0 from the left or from the 

right, we can’t create a tangent line at zero.  The limit doesn’t exist, which means no tangent 

line, and therefore no derivative at this minimum point.   

We just looked at two different ways that a continuous function can have a minimum or a 

maximum at a certain point.   

If a function has a maximum somewhere, the derivative must change from positive to 

negative.  If the function has a minimum the derivative must change from negative to 

positive.  A change in sign can only happen at a point where the derivative is either zero or it 

doesn’t exist.   

This is called The First Derivative Test, and we can actually find the minimum or maximum this 

way.  Be careful though:  a function can have a derivative of zero (a horizontal tangent line) 

somewhere where there is no minimum or maximum.  To see this, create a graph of the 

function f(x) = x3, magnified near x = 0.  Right at zero, the tangent line becomes horizontal, but 

this point is neither a minimum nor a maximum.  Without a graph, you can use the derivative:  

3x2 is positive before x = 0, and after too.  In the same way, it is possible that the derivative of a 

function doesn’t exist at a certain point, but there is neither a minimum nor a maximum there.  

For example, the function f(x) = √x
3

 has a vertical tangent line at x = 0.   A vertical tangent 

means no slope, because the “run” would be 0.  The derivative doesn’t exist, but the graph 

shows no minimum or maximum at x = 0.  Also, the derivative doesn’t change signs. 

Anyway, this topic is fairly straightforward.  To find the maximum or minimum, simply look for 

where the derivative changes signs.  That can happen where the derivative is 0 or doesn’t 

exist.  These are the potential minimum or maximum points.  Check if the derivative changes 

sign on either side of this potential point.  If it does, you have found a maximum or minimum, 

although it may just be a local max or min. 

To make this a little more challenging, your calculus book may ask you find the maximum or 

minimum of a function on a specified interval.  This means that the maximum or minimum 

value may occur at the end points of the interval, so don’t forget to check those!  Simply 

calculate the value of the function at these points (the y-value), and compare that with the  

y-value at your potential minimum and maximum points. 

You may see some fairly complicated fractions in your derivative so it may seem harder to 

figure out where it would be zero.  Just keep in mind that if the top part of the fraction is zero 

(but the bottom is not), the whole thing is zero.  If the bottom part of the fraction is zero, the 

derivative doesn’t exist because we can’t divide by zero.  
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Example 

A fairly standard problem for this subject involves fencing in an area to provide the maximum 

area with an available length p of fencing.  Here p would be the perimeter.  The fenced-in area 

is length times width, so A = lw.  If we call the length and width of the fenced in area l and w, 

we could say that 2l + 2w = p, or l + w = ½ p.   Because p is just a number, it is possible to 

eliminate one of the variables l and w.  Let’s say that l = ½ p – w.  Now our area is (½ p – w)w, or 

A = ½pw – w2.  We are interested in how the area changes as we change w, and specifically 

where the maximum area occurs.  We take the derivative  
dA

dw
 , which is ½ p – 2w, and set it to 

0.  Here we do not need to be concerned with where the derivative exists, because it exists 

everywhere.  Solving  ½ p – 2w = 0, we get 2w = ½ p, or w = ¼ p.  Since l + w = ½ p, we can 

conclude that the length l would be ¼ p also, and the shape that we are fencing in is a square.  

This shape is either a maximum or a minimum of the area function.  Notice that if w is smaller 

than ¼ p, the derivative is positive, and when it is larger the derivative is negative.  This shows 

that the area is increasing when w is smaller, and decreasing when w is bigger than the 

calculated value.  The square shape represents the maximum area that can be fenced in with a 

fence of length p.  [People who create math problems incorrectly assume that this interesting 

fact is well known among students.  As a result you are very unlikely to ever be able to take 

advantage of it on a test.] 

 

Example 

Find the point on the graph of f(x) = 2x that is closest to the point (3, 0) on the x-axis. 

This problem asks you to minimize the distance between two points.  Just as you did before 

calculus, you should use the Pythagorean Theorem to express this distance:  a2 + b2 = c2.  In this 

case c is the distance d, and we will use a for the horizontal distance and b as the vertical 

distance.  We can minimize the distance, but it will be easier to minimize the square of the 

distance. 

d2 = (x2 – x1)2 + (y2 – y1)2 

We have one of the points, but the point on the graph is unknown.  Use the generic point (x, y), 

which in this case will be (x, 2x): 

d2 = (x – 3)2 + (2x – 0)2 

d2 = x2 – 6x + 9 + 4x2 = 5x2 – 6x + 9 

The derivative is 10x – 6, which is zero at x = 
3

5
.  The point is (0.6, 1.2). 
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Position, Velocity, and Acceleration  
 

 

Velocity is speed with a direction.  It can be positive or negative. 

Velocity is the derivative (rate of change) of the position, and acceleration is the derivative of 

the velocity. 

An object is speeding up if the acceleration and the velocity have the same sign. 

 

 

 

 

 
                                                                                                                                                                 Photo:  Patrick Ch. Apfeld 

 

Velocity is the derivative of the position function. 

The derivative measures how fast something is changing.  If the position of an object changes 

with time the derivative gives us the speed of the object, or more precisely its velocity.  Speed 

is always a positive quantity, just like length, but velocity can be negative.  In physics we usually 

say that the velocity is positive if an object is moving up, and negative if an object is moving 

down.  Mathematicians often visualize an object moving along the x-axis.  In this case you 
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would consider the velocity as positive when the object is moving to the right, and negative 

when the object is moving to the left. 

 

Acceleration is the derivative of the velocity function 

 

If the velocity of an object changes, we call that acceleration.  Acceleration can be either 

positive or negative, depending the direction it acts in.  Negative acceleration doesn’t 

necessarily mean “slowing down”!  Acceleration due to gravity is usually thought of as negative, 

since an arrow representing it would point downwards.  A ball thrown upwards will experience 

a constant negative acceleration.  This will cause it to slow down at first, and then speed up as it 

reverses direction. 

Velocity has a direction, so we can say that an object is speeding up if the acceleration and the 

velocity are in the same direction (they have the same sign).  The object slows down if the 

velocity and acceleration have opposite signs.  This is important for problems that ask you to 

determine if something is speeding up or slowing down in a given interval.  You are likely to 

need an understanding of this for the AP test. 

 

Rolle’s Theorem and The Mean Value Theorem 
 

 

Rolle’s Theorem says that if the average rate of change over an interval is zero, then there has 

to be at least one point in the interval where the derivative (the instantaneous rate of change) 

is zero: 

If  
f(b)−f(a)

b−a
 = 0, then there is some point c, [a < c < b], where f’(c) = 0, provided that f(x) is 

continuous on the interval [a, b] and differentiable on (a, b). 

 

The Mean Value Theorem says that there is at least one point in an interval where the 

derivative is equal to the average rate of change: 

There is at least one number c, in the interval [a, b], such that f’(c) = 
f(b)−f(a)

b−a
, provided that f(x) 

is continuous on the interval [a, b] and differentiable on (a, b). 
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Please be careful here.  This section contains some shocking truths that could totally 

overwhelm you if you are not properly prepared for them.  Let’s have a look.   

What goes up must come down, provided it doesn’t reach escape velocity.  You won’t be 

surprised if a ball you throw up in the air comes back down to where you can catch it.  

However, here is the first shocking fact:  in order to return to the same position where it first 

left your hand, the ball must stop going up, and start coming down!  For one single point in 

time, the speed of the ball is actually zero.  Speed is continuous (at least, we assume it is), and 

for the velocity of the ball to change from positive to negative it must pass through 0.   

Here is a picture of this situation, with the velocity shown in red and the position superimposed 

in blue: 
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Another way of looking at this is to consider the position function, shown in blue above.  I chose 

to call the position of the hand of the person throwing the ball as 0 when I graphed this.  At the 

start of the interval the position is 0, and at the end of the interval when the person catches the 

ball, the position is also 0.  It would make no difference if I had labeled the starting position as 1 

meter and the end position as 1 meter.  The net change in the position over the interval is zero.  

The average rate of change of the position is the net change divided by the length of the 

interval.  This is actually the average speed (velocity in this case).  The average velocity is zero.  

There is only one possible conclusion we can draw from this example.  If the average rate of 

change in position over an interval (the average velocity) is zero, then there has to be at least 

one point in the interval where the speed is actually zero.  Be sure to take some time to recover 

from this shocking revelation, and convince yourself that this is really a fundamental truth of 

the universe in which you live.   

 

Well, all of that was really just common sense.  Velocity is the rate of change of position, so it is 

the derivative of the position function.  We can say that if a function has a net change of zero 

over an interval, then there must be at least one point in that interval where the derivative is 

zero.  That is called Rolle’s Theorem.  It comes with some cautions that are already implied in 

our real-life example.  First, the function must be continuous between the two points where it 

has the zero value.  So, if the function value is zero at point A and then zero again at point B, 

the function needs to be continuous over the entire interval [A, B].  Second, the function needs 

to have a derivative everywhere, except at the actual endpoints.  In the example with the ball, 

you would probably describe the motion as a function of time.  At t = 0, the position is 0.  The 

function doesn’t exist for t < 0, so there is no left-hand limit at t = 0 as required by the definition 

of the derivative.  That is not a problem that would affect the truth of the theorem.  The 

requirement is that the function should be differentiable on the open interval (A, B). 

Here is Rolle’s Theorem, and it says in math language what we just said in words: 

 

If  
f(b)−f(a)

b−a
 = 0, then there is some point c, [a < c < b], where f’(c) = 0, provided that f(x) is 

continuous on the interval [a, b] and differentiable on (a, b). 
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If you feel well enough, we can continue on to the next example.  In this example, I drive from 

somewhere in Orlando to some place near Tampa.  These two places are exactly 120 miles 

apart, and by an amazing coincidence it takes me exactly 2 hours to arrive at my destination.   

You can conclude that my average speed during this trip was 60 miles per hour.  And here is the 

second shocking fact:  it would have been impossible for me to complete my journey without 

attaining an exact speed of 60 miles per hour at some moment during the trip.  If I was driving 

at a speed of less than 60 mph for part of the journey, I would have to speed up at some point 

to reach a speed greater than 60 mph, so I could compensate for going more slowly for a while.  

If the average rate of change of a function is 60, then there must be at least one point where 

the derivative (the instantaneous rate of change) is actually 60.  Again, the same conditions 

about continuity and differentiability apply.  So, if  
f(b)−f(a)

b−a
 = 60, then there is some point c,  

[a < c < b], where f’(c) = 60, provided that f(x) is continuous on the interval [a, b] and 

differentiable on (a, b). 

The general idea is called the Mean Value Theorem, and yes, it is just common sense :   

If f(x) is defined and continuous on the interval [a,b] and differentiable on (a,b), then there is at 

least one number c  such that f’(c) = 
f(b)−f(a)

b−a
 for [a < c < b]. 

 

 

 

Second Derivatives 
 

 

 The second derivative, f”(x) or 
d2y

dx2
, gives the rate of change of the first derivative. 

 f”(x) > 0:  the curve is concave up. 

 f”(x) < 0:  the curve is concave down. 

 

 Potential inflection points are located where the second derivative is zero or doesn’t exist. 
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Velocity is the derivative of the position function.  Acceleration is the derivative of the velocity, 

and the derivative of the derivative of the position.  It is the second derivative of the position 

function.  You may take the second derivative of any function.   

Survival Tip:  Homework assignments on this topic tend to be long and tedious.  After you find 

what you think is the first derivative, check it using an online derivative calculator.  That way 

you don’t spend a long time finding the second derivative of the wrong first derivative. 

 

The second derivative is the change of the derivative, with respect to x.  That is, we want the 

infinitely small change in the first derivative, or d(
dy

dx
), divided by dx.  This may be written as 

d2y

dx2
 or as f”(x).  For example, the second derivative of the sine function is the derivative of the 

cosine function, which is -sin x. 

 

 

 

Graph the function y = x3 – 3x + 4 using graphing software.  Enter y = x^3 – 3x + 4 in the Input 

space.   To draw a tangent line to this curve at x = -2, enter y = 9x + 20.  The slope of this line is 

9.  As you move further to the right, toward x = -1, the value of the slope of decreases until it is 

0 for a tangent line drawn at x = -1.  The function has a local maximum here.  Further to the 

right the slope continues to decrease as it becomes more and more negative.  The derivative is 

decreasing, which means that the second derivative is negative.  The second derivative 

measures the rate of change of the first derivative.  In fact, whenever a curve is concave down, 

the second derivative will be negative. 

At x = 0 the slope of the tangent line reaches a (local) maximum negative value, and then it 

begins to increase.  It continues to increase, reaching 0 at x = 1, and then becoming more and 

more positive.  Because the value of the first derivative is increasing, the second derivative is 

positive.  Whenever a curve is concave up, the second derivative is positive.   

I find it hard to think of that each time, so I remember it like this: 
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Notice that at x = 0 the curve changes from being concave down to being concave up.  At this 

point the second derivative changes from negative to positive, so it is 0 here.  A point where the 

concavity of a curve changes is called an inflection point.  To find the location of the inflection 

points of a curve, look for where the second derivative changes signs.  This has the potential 

to occur whenever the second derivative is zero or doesn’t exist.  However, just like for the first 

derivative, these points just indicate potential sign changes.  For example, the second derivative 

of the function y = x4 is 0 at x = 0, but there is no inflection point at that location. 

 

 

The Second Derivative Test 
 

 

If f’(x) = 0 and f”(x) is positive, there is a minimum at that point. 

If f’(x) = 0 and f”(x) is negative, the point is a maximum. 

If f”(x) is zero or doesn’t exist, the Second Derivative Test is inconclusive.  Use the First 

Derivative Test. 

  

 

 

The second derivative can also help us determine whether a point is a minimum or a maximum.  

If a function has a local or global maximum at a point where it is differentiable, the first 
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derivative is 0.  If the second derivative is negative at this point, the curve will be concave down 

which means that there is a maximum here: 

 

 

If the second derivative is positive we conclude that the curve is concave up so we must have a 

minimum:   

 

 

However, there are times when the second derivative is 0 at the point in question so that gives 

us no information.  The second derivative may also be hard to find.  In such cases look at the 

first derivative to see whether it changes from positive to negative (a maximum), or from 

negative to positive (a minimum). 
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Implicit Differentiation 

 
 

 

Treat y as a function of x, even if it is not stated that way, e.g.  x2 + y2 = 100. 

y2 is composed of an outer function and an inner function.  Take the derivative as 2y ∙ 
dy

dx
 using 

the Chain Rule. 

x2 + y2 = 100   →    2x + 2yy’ = 0   →   2yy’ = - 2x    →   y’ = - 
x

y
 = ± 

x

√100−x2
 

 

 

 

When I first learned about implicit differentiation I found it very confusing.  It was not so hard 

to learn what to do, but it wasn’t clear why we were doing it that way.   

Implicit differentiation is used when it is not convenient, or not possible, to write a function or 

relation in the form y = ….  As an example, we will use the equation x2 + y2 = 100.  It is a bit 

inconvenient to rewrite that as :  y = ± √100 − x2, and even more inconvenient to get the 

derivative so we could construct a tangent line to the circle.  Still, we can do that by writing  

y = (100 – x2)1/2    and    y = - (100 – x2)1/2     

Now use the chain rule to get y = 
1

2
 (100 – x2)-1/2 ∙ - 2x    and    y = - 

1

2
 (100 – x2)-1/2 ∙ - 2x.  Once you 

rewrite that nicely you have y =  ±  
x

√100−x2
.       

Fortunately there is an much easier way.   

If you have read the short e-book “What is Calculus – A Bedtime Story”, you will want to just use 

differentials here: 

x2 + y2 = 100 

2xdx + 2ydy = 0    Divide both sides by dx: 

2x 
dx

dx
 + 2y 

dy

dx
 = 0 
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2x + 2y 
dy

dx
 = 0 

2y 
dy

dx
 = - 2x 

dy

dx
 = - 

2x

2y
 

dy

dx
 = - 

x

y
 

Substitute y = ± √100 − x2:  
dy

dx
 = ± 

x

√100−x2
  

 

When we use implicit differentiation we “imply” that y is a function of x, but we just leave the 

equation as it is:   

x2 + y2 = 100 

 

Using the implicit assumption that y is a function of x, you can differentiate y2 + x2 = 100 directly 

using the chain rule.  Notice that y2 has an outer function, the squared part (with a derivative of 

2y), and an inner function y(x).  The derivative of y(x) is simply  
dy

dx
.   So, taking the derivative of 

the first term, y2, gives us 2y ∙ 
dy

dx
.    To get the derivative of x2, with respect to x, take the 

derivative of the outer function and multiply by the derivative of the inner function:   

2x ∙ 
dx

dx
 = 2x.   

Differentiating y2 + x2 = 100 implicitly, we get:    

2y  
dy

dx
 + 2x = 0  

Next, divide both sides by 2: 

y 
dy

dx
 + x = 0 

Now the derivative we want is right there:   

y 
dy

dx
 = - x  
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dy

dx
 = - 

x

y
    Substitute y = ± √100 − x2: 

dy

dx
 = ± 

x

√100−x2
 

Because y2 + x2 = 100 is a circle, the slope of the tangent line at point (x,y) may be positive or 

negative depending on your choice of x and y. 

Stop here for a moment to appreciate the fact that if it is too difficult to solve a particular 

equation for y you may be stuck with an expression like 
dy

dx
 = - 

x

y
.  You will see this type of 

expression again when we look at differential equations. 

 

Example 1 

Find the point(s), if any, where the graph of y2 + x2 = 100 has a horizontal tangent line. 

Since we already know that 
dy

dx
 = - 

x

y
 here, all we have to do is find where - 

x

y
 = 0.  If you think 

about it for a bit, or multiply both sides by y, you’ll realize that the only way that - 
x

y
 can be zero 

is if the top part of the fraction, x, is equal to zero.  On the other hand, y must not be equal to 

zero, because a division by 0 would mean that the derivative does not exist.  If you find what 

you think is a suitable value for x, go back and check that the resulting value for y actually 

allows the derivative to be zero!   

There are only two potential solutions.  When x = 0, the original equation tells us that y2 = 100, 

which means that y = 10 or -10.  The two points are (0,10) and (0,-10).  Checking the derivative 

at both these points gives us  

- 
x

y
 = - 

0

10
 = 0 and  

- 
x

y
 = - 

0

−10
 = 0.   

The graph has horizontal tangent lines at the top and the bottom of the circle, which is as we 

would expect. 

 

 

Example 2 

If y3 + x3 – 10xy = 0, find dy/dx. 
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Now the only way to find the derivative is through implicit differentiation.  We have to use both 

the chain rule and the product rule: 

3y2 ·  
dy

dx
 + 3x2 – 10(1 · y +  

dy

dx
 · x) = 0.        Remember that the derivative of a constant is always 

0, even if that constant is 0! 

It is a bit of a pain to write out the fraction 
dy

dx
 as you do your calculation, so many people use 

the shorthand notation y’ here instead: 

3y2y’ + 3x2 – 10(y +  xy’) = 0 

3y2y’ + 3x2 – 10y – 10xy’ = 0 

Although this looks a bit hard, equations of this kind can always be solved for y’, the derivative 

we want, by moving all of the terms containing y’ to one side of the equation: 

3y2y’  – 10xy’ =  10y – 3x2 

y’(3y2 -10x) = 10y - 3x2 

y’ = 
10y − 3x2

3y2−10x
 

dy

dx
 = 

10y − 3x2

3y2−10x
 

Because we can’t solve the original equation for y, the expression for the derivative can’t be 

written only in terms of x. 

 

Example 3 

If f(x) + g(y) = 3x + 2y2, find 
dy

dx
. 

Even though there are unspecified functions f and g, we can take the derivative in a general 

way.  Note however that for g(y), y is still considered a function of x, so treat y as the “inner” 

function: 

f’(x) + g’(y)y’ = 3 + 4yy’ 

g’(y)y’ = - f’(x) + 3 + 4yy’ 

g’(y)y’ – 4yy’ = 3 – f’(x) 
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y’(g’(y) – 4y) = 3 – f’(x) 

y’ = 
3−f′(x)

g′(y)−4y
 

 

 

 

Related Rates 
 

 

For Related Rates problems, there is always a formula that relates one changing quantity to 

another.  Implied in this is that both quantities are functions of time.  Differentiate both sides of 

the equation (implicitly) with respect to time: 

C = πr2   →    
dC

dt
 = π ∙ 2r 

dr

dt
 

 

 

Many times the change in one thing depends on the change in something else.  For example, 

the circumference of a circle changes as we change the radius.  However, the change in the 

radius may also depend on something, like maybe time.  Consider the following example: 

Bob likes to keep his lawn looking just perfect.  One day he is horrified to discover that a 

fairy ring fungus has invaded his beautiful turf, creating an ugly circle of mushrooms.  In 

spite of Bob’s efforts to control the fungus, the radius of the ring continues to increase at 

a steady rate of 3 inches a day.  How fast is the circumference (the part with the 

mushrooms) increasing?  
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                                                                                                                                                                              Fairy Ring Fungus 

 

Obviously, the circumference of the ring depends on the radius, which is increasing with time.  

C is just a function of r:  C(r) = 2πr.  Also, r is changing as a function of time:  r(t) = 3t (inches).  

Let’s make a little table to describe this situation: 

 

t (days) 
 

r (inches) Circumference 
(inches) 

1 3 6 π 

2 6 12 π 

3 9 18 π 

4 12 24 π 

 

Calculus tells us that since C = 2πr,  
dC

dr
 = 2π. 

The table shows that the circumference is in fact increasing by 2π for every inch of increase in r, 

as expected. 

We can also determine that since r = 3t, 
dr

dt
  = 3 
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The rate of change of the circumference with respect to the radius is 2π (2π units per unit 

increase in r), and the radius is changing at a rate of 3 with respect to time.  To get the rate of 

change of something that in turn depends on the rate of change of something else, you can use 

the Chain Rule and multiply the two rates of change: 

 
dC

dt
 = 

dC

dr
 · 

dr

dt
 = 2π · 3 = 6π 

You can see that dr cancels out to give you the derivative you want,  
dC

dt
.  Check the table to 

confirm that the rate of change of the circumference is 6π inches per day.   

By now you know implicit differentiation, so you should be able to get 
dC

dt
 directly.  Implied in 

the equation C = 2πr for this problem is that both C and r are functions of the time t.  

Differentiate both sides with respect to t: 

C = 2πr 

dC

dt
 = 2π ∙ 

dr

dt
 

dC

dt
 = 2π · 3 = 6π 

This method gives the same result, and it is a lot easier to use for more complicated situations.  

Try it out for yourself by using a simple example like the area of an expanding square. 

Related rates problems take a basic principle like that of the fairy ring fungus, and create 

endless variations of it.  The simplest examples may involve expanding balloons or melting 

snowballs, while the more complex ones have elaborate descriptions involving angles.  

However, they all have something in common, which is that there is a formula that relates one 

changing quantity to another changing quantity.  In the case of the fungus, the changing 

circumference could be linked to the changing radius by the simple formula C = 2πr.  We were 

able to differentiate both sides with respect to t to get the derivative 
dC

dt
 which was 6π.  Note 

that this is a nice constant rate of change that doesn’t depend on the value of r.  Authors of 

calculus textbooks usually go to a lot of trouble to provide more interesting problems for you 

that do have a varying rate of change. 

 

 

Example 1 

Here is a real classic:  the sliding ladder problem.    
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A 10 foot ladder is leaning against a wall, but it starts to slide down, at a rate of 2 feet/sec.  

How fast is the bottom of the ladder moving away from the wall when the top of the 

ladder is 6 feet from the ground?   

First we need an equation that relates the two distances involved (the distance along the wall 

from the top of the ladder to the ground, and the distance between the bottom of the ladder 

and the wall).  Always draw yourself a nice picture of the situation.  In this case you’ll see that 

the two distances are related through the Pythagorean Theorem.   If we call the distance along 

the wall a, and the bottom distance b, we can write a2 + b2 = 100.  (Hmm, that looks 

suspiciously like the equation we used in the implicit differentiation section.)  Both a and b are 

changing, and the problem tells us the rate of change of a.  The ladder is sliding down the wall 

at a rate of 2 ft/sec, meaning distance a is decreasing at a rate of 2 ft/sec.  Because the distance 

is decreasing rather than increasing we say that the rate of change is negative:  
da

dt
 = -2.   

 I usually put a “have” and “want” on my paper.  In this case I would write:  Have: 
da

dt
    Want: 

db

dt
 

Start by writing the equation that relates the two distances a and b:  

a2 + b2 = 100 

Although the equation doesn’t explicitly say so, both a and b are changing with time so they are 

functions of t.  Take the derivative with respect to t on both sides of the equation: 

2a
da

dt
 + 2b

db

dt
 = 0   (Notice that the constant 100 doesn’t change with time, so its derivative is 0) 

This is where I look at my “have and want” statement.  I want 
db

dt
, and I can fill in 

da

dt
.   

You can substitute that directly, or clean the equation up a bit first by dividing both sides by 2: 

2a
da

dt
 + 2b

db

dt
 = 0 

a
da

dt
 + b

db

dt
 = 0 

a (-2)  + b
db

dt
 = 0 

-2a = -b
db

dt
 

db

dt
  = 

2a

b
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This tells us that the rate of change of b varies depending on the ratio of a to b.  We have a 

general equation that describes how fast b is changing, but we only get a specific rate if we 

pick a specific point in time.  The problem must supply this information, so it asks for the rate 

when the top of the ladder is 6 feet from the ground.  When a is 6, b is 8 (since a2 + b2 = 100), 

and 
db

dt
  is 

2 ∙ 6

8
 = 1.5 feet/sec.  This rate of change is positive, since the distance b increases as 

the ladder slides down the wall. 

 

Example 2 

The volume of a cube is increasing at a steady rate of 150 in3 per hour.  How fast is the 

surface area increasing when the sides of the cube are 10 inches? 

We have 
dV

dt
, and we want 

dA

dt
.  The rate of change will likely not be constant, because the 

problem asks for 
dA

dt
 at a specific point:  “when the sides of the cube are 10 inches.” 

In this variation of related rates, there are two separate equations that relate the three 

quantities (volume, area, sides): 

V = s3   and   A = 6s2 

There are several ways to solve this problem.  One way is to differentiate both equations 

separately. 

V = s3 

dV

dt
 = 3s2 

ds

dt
  

At the point where s = 10:  150 = 3 ∙ 102 
ds

dt
, so 

ds

dt
 = 0.5 inches per hour. 

A = 6s2 

dA

dt
 = 12s 

ds

dt
  

At the point where s = 10:     
dA

dt
 = 12 ∙ 10 ∙ 0.5 = 60 square inches per hour. 
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We can also get the answer by combining the two equations.  If V = s3, then s = V1/3.  Substitute 

that into A = 6s2 to get A = 6V2/3.  Now take the derivative of this last equation with respect to 

time: 

dA

dt
 = 6 ∙ 

2

3
 V-1/3 

dV

dt
 

When the sides are 10 inches, the volume is 1000 in3 and V-1/3 = 
1

√1000
3  = 

1

10
 

dA

dt
 = 4 ∙ 

1

10
 ∙ 150 = 60 in2/hr. 

You can combine the equations the other way too:  If A = 6s2 then s = (
A

6
)

1

2
.  V = s3 = (

A

6
)

3

2
.  

Remember to use the chain rule to differentiate V = (
A

6
)

3

2
, since A is a function of t: 

dV

dt
 = 

3

2
 (

A

6
)

1

2
 ∙ 

1

6
 
dA

dt
 

When the sides are 10 inches, the total surface area A is 600 in2:  
dV

dt
 = 

3

2
 (

600

6
)

1

2
 ∙ 

1

6
 
dA

dt
, so 

150 = 
3

2
 · 10 ∙ 

1

6
  

dA

dt
, and 

dA

dt
 = 60. 

 
 

Example 3 

Sometimes one of the changing quantities is an angle.  Always work with the angle in radians.  

The rate of change of the angle will be in radians per unit of time, such as radians/sec. 

Lucia is marking the spot in her yard where she wants to put her new shed.  She places a 

stake at the southwest corner and ties two strings to it.  Then she walks directly north 10 

feet and attaches the first string to a stake at the northwest corner.   The northeast corner 

will be 15 feet from the northwest corner, and Lucia is using the second string to check 

that her angle is straight.  [According to the Pythagorean Theorem, if the angle is straight 

then the length of the second string will be 18 feet and 1/3 inch when it stretches from the 

southwest to the northeast corner.]  Starting at the northwest corner, Lucia walks to the 

northeast corner at a rate of 4 feet per second, while holding the second string taut.  How 

fast is the angle between the two strings changing when she is halfway between the two 

corners? 
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Have:  
dx

dt
 = 4ft/sec    Want:  

dθ

dt
 

Be careful here so you don’t end up with more than two unknowns in your equation.  We could 

say that sin θ = x/y, but then we have three unknowns.  It is possible to express y in terms of x 

by using the Pythagorean Theorem, but the resulting equation is complex and hard to 

differentiate.  The best way to relate the angle θ to the distance x is by using the tangent:   

tan θ = 
x

10
 .  Now differentiate both sides with respect to t: 

sec2θ 
dθ

dt
 = 

1

10
 
dx

dt
.     

1

cos2θ
 
dθ

dt
 = 

4

10
  

dθ

dt
 = 

4 cos2θ

10
 = 

2

5
  cos2θ 

When x is 7.5 feet, y is √102 + 7.52  = 12.5 so cos θ is 
10

12.5
 = 

20

25
 = 

4

5
.  Squaring that we get 

16

25
, so 

dθ

dt
 = 

2

5
 · 

16

25
 = 32/125 = 0.256 radians per second. 
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Example 4 

A box pictured on a computer screen is increasing in size.  The box is getting taller at a 

rate of 1” per minute, the length is growing at a rate of 3” per minute, and the width is 

increasing at a rate of 2” per minute.  How fast is the volume of the box increasing when 

the length is 5”, the width is 2” and the height is 2”? 

Have:  
dh

dt
, 

dl

dt
, 

dw

dt
       Want:  

dV

dt
 

The equation that relates all three quantities is V = lwh.  Here l, w, and h are all functions of 

time, so we must use the product rule.  Since the product rule deals with 2 functions rather 

than 3, separate the equation:  V = lw · h.  (We are really using the product rule twice.)  Now 

differentiate with respect to time: 

dV

dt
 = (lw)’ h + lw h’ 

dV

dt
 = (

dl

dt
 w + 

dw

dt
 l)h + lw 

dh

dt
 

dV

dt
 = hw 

dl

dt
 + hl 

dw

dt
 + lw 

dh

dt
 

dV

dt
 = 2 · 2 · 3 + 2 · 5 · 2 + 5 · 2 · 1 = 42 in3/min 

 

L’Hospital’s Rule 
 

 

  If h(x) = 
f(x)

g(x)
 has a value of 

0

0
 at x = a, then lim

x→a
h(x) = 

f′(x)

g′(x)
. 

Caution:  Take the derivatives of the top and bottom separately, don’t try to use the quotient 

rule! 



96 
 

  You can use L’Hospital’s Rule for limits of the form 
0

0
 and 

±∞

±∞
. 

Suppose you are trying to draw the graph of f(x) = 
sin x

x
, without using a graphing calculator or 

graphing program.  You would have to find both the top and the bottom values for different 

values of x.  Let’s do that now for a few values.  Our top function is y1 = sin x.  Remember to 

work in radians, so for x = 2 we get y1 = sin (2) ≈ .9093.  The bottom function is y2 = x, so that 

part is easy.  When x = 2, f(x) ≈ 
.9093

2
 ≈ .45.  Now try x = 1:  y1 = sin (1) = .8415 and  

y2 = 1.  f(x) = 
.8415 

1
 ≈ .84.  When x = 0 …. oops, not so good.  Zero over zero is considered to be 

an indeterminate form.  The actual value of the limit may be zero, or some other number, or it 

may not exist at all. 

To graph f(x) properly, you might try calculating some values of the function close to 0, like at x 

= 0.1.  f(x) = 
sin(.1)

.1
 ≈ 

.0998

.1
 ≈ .998.  Getting even closer to 0, we try x = 0.01:  f(x) = 

sin(.01)

.01
 ≈ 

.00999

.01
 ≈ 

.999.  Notice that both y1 and y2 get smaller as expected, since both the top and the bottom 

functions have a value of 0 when x = 0.  To get as close as possible to the actual value of f(x) = 
sin x

x
 at x = 0 we should take both the top and the bottom function at x = 0 and then move an 

infinitely small distance x to the right so we get an infinitely small distance y as the function 

value.  Infinitely small x and y distances??  Hey, that sounds like a job for … Derivative Man!  

Johann Bernoulli (1667 – 1748) was the first to use derivatives in this situation.  Unfortunately 

for him, he had (probably inadvertently) sold the copyright of his calculus discoveries to 

Marquis de L’Hospital, so this method became known as L’Hospital’s Rule.  Just a side note 

here:  The Marquis de L’Hospital was a wealthy man who could have bought all kinds of things.  

He chose to spend a huge amount of money on what really mattered to him – calculus.  That is 

hard to imagine when you are sitting in a calculus class watching the clock move slowly, but 

calculus really was the most important discovery of L’Hospital’s time.   

Getting back to the problem of finding the limit as x goes to 0 of f(x) = 
sin x

x
, we want the 

infinitely small function value of y1 = sin x very close to 0, divided by the infinitely small function 

value of y2 = x very close to 0.  Since I can’t actually draw infinitely small lines I have illustrated 

the situation by indicating Δy, which is a small increase in the function value y as you move a 

small distance Δx to the right of 0: 
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It works the same for the bottom function, y2 = x: 

 

 

The function value for f(x) = 
sin x

x
 at a small distance Δx to the right of 0 is 

Δy1

Δy2
.  Now we need 

the same thing for an x value (dx) infinitely close to 0.  
dy1

dy2
 would do the job, and we can get 

that by dividing 

dy1
dx

dy2
dx

 .    
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Because we are using the same x for both functions, dx is also the same for both the top and 

bottom function.  Now dx conveniently cancels out here to give us what we want.   

We conclude that we can find the limit as x→0 of f(x) = 
sin x

x
 by taking the derivative of both the 

top and the bottom function:  
y1′

y2′
 = 

cos x

1
.  When x = 0 that value is 1. 

This was a very interesting discovery.  Notice that L’Hospital’s Rule was designed for the specific 

situation we just looked at.  There is one function, divided by another function, and both 

functions have a value of 0 at the spot where we’re trying to find the limit.  That spot could be 

anywhere.  I picked x = 0 in the example above, but we can change that easily.  Try lim
x→2

sin(x−2)

x−2
 .  

What doesn’t work is to try using L’Hospital’s Rule when both function values are not 0.  In that 

case one or both of the functions would have a large y value that could not be replaced by dy 

like we just did. 

So, at first L’Hospital’s Rule was used only for limits involving the indeterminate form 
0

0
.  

L’Hospital’s Rule says that we can get this limit that might otherwise elude us by taking the ratio 

of the derivatives.  That means that we are actually taking the ratio of the rate of change of the 

two functions.  Be careful here:  take the derivatives of the top and bottom separately, don’t try 

to use the quotient rule! 

Another situation where we can’t easily find a limit is if there are two functions that both 

approach infinity.  For example, we may be trying to find the limit as  x→∞ of  
ln x

x
.   

The values of both the top and the bottom function go to infinity as x gets larger and larger.  

The limit looks like 
∞

∞
. 

As it turns out, we can actually use L’Hospital’s Rule here too.  The reason for that is that as a 

function approaches infinity, its reciprocal approaches zero.  Simply take the derivative of both 

functions (separately), and then find the limit as x goes to infinity: 

limit of x→∞ of 
ln x

x
 = 

1

x

1
 = 

0

1
 = 0 

Using L’Hospital’s Rule often involves rearranging indeterminate limits into 
0

0
 or 

∞

∞
 so you can 

apply the rule.  Notice that if you have a product of two functions f and g, and f ∙ g works out to 

be 0 ∙ ∞ in the limit, you can rearrange that as 
f
1

g

  to get 
0

0
, or 

g
1

f

 to get 
∞

∞
.  
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Derivatives of Exponential Functions 
 

 

    The function y = ex increases at a rate that is equal to its value at any given point. 

    The derivative of ex is ex.                              The derivative of ax is ax ln a. 

         

 

        

For exponential functions, the rate of increase at a particular point depends on the value of the 

function at that point.  For example, look at the function y = 2x.  When x = 1 the value of the 

function (the y value) is 2.  Because the function increases faster and faster, we want to 

approximate the rate of increase by looking at the value of the function between x = 1 and a 

point very close to that, say x = 1.0001.  At x = 1.0001, y = 21.0001 ≈ 2.000139.  The function 

value has increased by about 0.000139.  That means that y has increased by 0.00139 units for 

an increase of 0.0001 units in x.  The rate of increase is defined as the change in y divided by 

the change in x, or 0.000139 ÷  0.0001 which works out to 1.39.  When x = 3, y = 8, and at x = 

3.0001 y ≈ 8.000555.  Now the rate of increase is approximately (8.000555 – 8) ÷  0.0001 = 5.55  

So, when the value of the function is 2, the rate of increase is 1.39, and when the value of the 

function is 8, the rate of increase is 5.55.  The function y = 2x increases at a rate that is less than 

its value, at any given point.  If you do the same calculations for the function  

y = 3x, you will find that at any given point the function is increasing faster than its value at that 

point: 

 

x y = 2x Rate of 

increase 

 y = 3x Rate of 

increase 

1 2  

   1.39 

3  

  3.30 
1.0001 2.000139 3.00033 

2 4  9  
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2.0001 4.000277    2.77 9.000989   9.89 

3 8  

   5.55 

27  

  29.7 
3.0001 8.000555 27.00297 

4 16  

   11.1 

81  

  89.0 
4.0001 16.00111 81.00890 

 

 

There is a base, a number between 2 and 3, for which the function y = bx increases at a rate 

exactly equal to its value at any point.  This special number is the number e.  Because the rate 

of increase of ex is always equal to ex, the derivative of ex is just ex.   

Like π, e has an infinite number of digits.  Many calculators include it as a special key that you 

can press to see that its value is 2.7182818228….   

The table below shows the rate of increase for the three functions y = 2x, y = ex, and y = 3x. 

Notice that at x = 1, the value of the function y = ex is approximately 2.718, and it is increasing 

at a rate of approximately 2.718.  When x = 2, the function value is 7.389, and the rate of 

increase is also 7.389, and so on. 

x y = 2x Rate of 

increase 

y = ex Rate of 

increase 

y = 3x Rate of 

increase 

1 2  

  1.39 

2.718282  

  2.718 

3  

 3.30 
1.0001 2.000139 2.718554 3.00033 

2 4  

  2.77 

7.389056  

  7.389 

9  

  9.89 
2.0001 4.000277 7.389795 9.000989 

3 8  

  5.55 

20.08554  

  20.09 

27  

  29.7 
3.0001 8.000555 20.0876 27.00297 

4 16  

  11.1 

54.59815  

  54.60 

81  

  89.0 
4.0001 16.00111 54.60361 81.00890 
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The next image shows the graphs of y = 2x (blue), y = ex (green), and y = 3x (red): 

 

 

 

 

If y = ex  then   y’ = ex 

Now, think about the function y = 3x.  You may be very tempted to write the derivative of this 

function as x · 3x-1, but if you go back and look at how we developed that rule about the 

exponent you will see that it really doesn’t apply here.  For an exponential function x is the 

exponent, so y = 3x is very different from y = x3.  Instead, it is very closely related to the natural 

exponential function y = ex.  We can rewrite y = 3x so it uses e as a base.  If you raise e to the 

power ln x, what you are doing is taking the natural log of x, and then putting the result into the 

inverse function ex.  Well, if you do that you just get x.  This is how inverse functions work, since 

the inverse function “undoes” the operation of the original function.  elnx  is really just x.  Grab a 

calculator and try it out!  3 is really the same as eln3 , so just write it like that: 

y = 3x 

y = (eln 3)
x
 

y = ex ln 3 
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[Alternatively, you can take the natural log on both sides of the equation to get ln y = x ln 3, 

which you can then change to eln y = ex ln 3] 

When you go to differentiate y = ex ln 3, remember that ln 3 is just a number.  Use the chain rule: 

y’ = ex ln 3 · ln 3 

y’ = (eln 3)
x
 ln 3         and eln3 is just 3: 

y’ = 3x ln 3 

In general, the derivative of y = ax would be y’ = ax ln a. 

 

 

Derivatives of Logarithmic Functions 

 

 

        The derivative of ln x  is 
1

x
.       The derivative of logax  is  

1

x ln a
. 

 

 

 

So, how did people figure out how to find the derivatives of logarithmic functions?  Well, 

suppose I really wanted to know the derivative of ln x, at say x = 3.  I could draw a graph, and 

then sketch the tangent line at x = 3.  The derivative is just the slope of that line, but how to 

find it? 

The answer lies with the inverse function of ln x, which is ex.  To create the graph of an inverse 

function, we use the line y = x as a mirror.  I can draw the graph of y = ex, which is a mirror 

image of y = ln x, complete with the mirror image of the tangent line: 
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While I may not know how to find the slope of the original tangent line (shown in blue), I do 

know how to get the slope of its mirror image.  That is just the derivative of ex, which is also ex.  

For the orange tangent line the slope is 
rise

run
 = ex.  However, when you take the inverse, y and x 

are reversed, so that corresponds to 
run

rise
 = 

1

ex
 for the blue line.  There, it should be easy now.  

I’ll just use x = 3, and…..  Hmm, looking back at the orange line, I see a problem.  The slope here 

isn’t really the derivative at x = 3.  It looks more like the derivative at maybe x = 1.1 or so.  

Thinking about that for a bit, I realize that while the original point I picked was (3, ln 3), the 

point in the mirror is actually (ln 3, 3).  So, I have to take the slope of the orange tangent line at 

x = ln 3, and then flip it:  
1

eln 3
.  Because ex and ln x are inverse functions, eln 3 is just 3.  The 

derivative of y = ln x at x = 3 is 
1

3
.   

That works the same way for every value of x:  The derivative of ln x is 
1

eln x
: 

If y = ln x, then 
𝐝𝐲

𝐝𝐱
 = 

𝟏

𝐱
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This is a picture of the function y = ln(x), and what should be its derivative, y = 
1

x
.   Notice that 

ln(x) exists only for positive values of x since negative numbers do not have logarithms.  It really 

looks like we are missing something, so let’s change the picture to show y = ln|x| and its 

derivative y = 
1

x
: 

 

 

 

There, that looks a lot better because every value for x except 0 is accounted for.  But does  

y = ln|x| actually have the same derivative as y = ln x?  Looking at the graphs, I would say that it 

is likely.  From the left to the center, you can see the natural log function decreasing, slowly at 
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first and then faster and faster.  The supposed derivative is slightly negative at first, indicating a 

slight decrease, and then becomes more and more negative.  To answer the question in a 

definite way we need to break y = ln|x| up into its two component parts:  y = ln x for x > 0, and y 

= ln (-x) for x < 0.  We already found the derivative of y = ln x by using its inverse function.  The 

function y = ln (-x) has an inverse too.  To find that, just switch x and y and solve for y: 

y = ln (-x) 

x = ln (-y) 

ex = eln (-y) 

ex = -y 

y = -ex    This is the inverse function. 

To find the derivative of y = ln (-x), we consider that it is the reciprocal of the derivative of its 

inverse, taken at the point ln (-x).  The derivative of y = -ex is just -ex, so we get 
1

−eln(−x) = 
1

− −x
 = 

1

x
. 

 

Implicit differentiation is actually faster at finding the derivatives of logarithmic functions: 

Rewrite y = ln x  as ey = elnx, which is the same as ey = x.  Rewrite y = ln (-x) as ey = eln(-x), which 

turns into ey = -x.  Now use implicit differentiation: 

ey = x     ey = -x  

ey · y’ = 1    ey · y’ = -1 

y’ = 
1

ey
     y’ = 

−1

ey
 

y’ = 
1

elnx
    y’ = 

−1

eln (−x)
 

y’ = 
1

x
     y’ = 

1

x
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Because we know that 
1

x
 is the derivative of y = ln x, we can also find the derivatives of 

logarithmic functions in general.  Just like we saw how to express all exponential functions in 

terms of e, we want to express all logarithmic functions in terms of the natural logarithm, ln. 

 

Example 

Find the derivative of y = log5x.   

To compute a specific value for y when you have a value for x you need to find a better way to 

express this function, because your calculator probably doesn’t do base 5 logarithms.  [Note:  

To follow this example, you need to believe that 5 raised to the power “log5x” is just x.  For 

example, the base 5 log of 125 is 3, because 53 = 125.  5 raised to the power “log5125” is 125.] 

y = log5x 

5y = 5log5x 

 

5y = x       

ln (5y) = ln x 

y ln 5 = ln x 

y =  
1

ln 5
 ln x 

Now there is only a natural logarithm in your function, and you can use a calculator to find 

values, or graph the function.  When you go to take the derivative, remember that 
1

ln 5
 is just a 

constant. 

y’ = 
1

ln 5
 · 

1

x
 = 

1

x ln 5
 

In general, the derivative of y = logax  is  y’ = 
𝟏

𝐱 𝐥𝐧 𝐚
. 

 

 

Now that you know that the derivative of ln x is 
1

x
, you can use implicit differentiation to quickly 

find the derivative of an exponential function if you can’t remember the formula.  For example: 
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y = 3x 

 

ln y = x ln 3 

1

y
 y’ = ln 3 

y’ = y ln 3   and since y = 3x: 

y’ = 3x ln 3 

 

 

Derivatives of Inverse Functions 
 

 

    The derivative of f(x) at the point (a, b) is 
1

f𝑖𝑛𝑣′(b)
.   

    f’(x) = 
𝟏

𝐠′(𝐟(𝐱))
 ,  where g(x) is the inverse of f(x). 

 

 

Continuing from the previous section, we can find the derivative of a function from the 

derivative of its inverse. 

 

 

Example 1 

Find the value of the derivative of f(x) = √x at x = 4 directly, and also from its inverse 

function. 

If you take the derivative of f(x) = √x  at x = 4 directly, you want to re-write the function as   

f(x) = x1/2, so f’(x) = 
1

2
 x-1/2 which is  

1

2√x
.  When x is 4, that works out to 

1

4
. 
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Now consider the inverse function, which is finv = x2, with a restricted domain.  The derivative of 

that is 2x.   

 

 

The slope of the orange tangent line is 2x, where x is 2 rather than 4.  The inverse of that is 
1

2x
, 

for x = 2.  The slope of the blue tangent line is 
1

4
. 

 

 

Example 2 

Find the value of the derivative of f(x) at the point (a, b) in terms of the derivative of 

finv(x). 
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The tangent line of the inverse function is at the point (b, a), so we want the reciprocal of 

finv’(b): 

f’(a) = 
1

finv′(b)
 

Note that b is f(x), so in general: 

f’(x) = 
𝟏

𝐟𝐢𝐧𝐯′(𝐟(𝐱))
 

or, if g(x) is the inverse of f(x):  f’(x) = 
𝟏

𝐠′(𝐟(𝐱))
 

 [Of course it also works the other way around:  f inv′(x) = 
1

f′(f𝑖𝑛𝑣(x))
 or g’(x) = 

1

f′(g(x))
 ] 

This formula is useful when the derivative of a function is hard to find or totally unknown. 

 

Now we can verify the general formula for our specific example of f(x) = √x and finv(x) = x2: 
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f’(x) = 
1

finv′(f(x))
  

f’(x) = 
1

2(f(x))
 = 

1

2√x
 

Although you wouldn’t have a particular reason to do this the other way around, you could 

actually find derivative of f(x) = x2 by using the derivative of the inverse function finv(x) = √x: 

f’(x) = 
1

finv′(f(x))
 = 

1
1

2√f(x)

 = 
1
1

2√x2

 

Because 1 ÷ 
1

2√x2
 = 1 ·  

2√x2

1
 , the answer is 2|x|.   

The absolute value sign appears here because we are considering f(x) = x2 specifically as the 

inverse of g(x) = √x, so we only get the part of the function where x is positive. 

 

Here is recap using implicit differentiation, which is more efficient: 

The inverse of y = x2 is x = y2: 

y2 = x 

2y · y’ = 1 

y’ = 
1

2y
  and y = √x, so 

y’ = 
1

2√x
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Inverse Trigonometric Functions 
 

 

                                   Domain                          Range  

  Arcsine         -1 to 1           - π/2 to π/2 radians 

  Arccosecant         (-∞,-1] ∪ [1, ∞)         - π/2 to π/2 radians, not including 0  

  Arccosine         -1 to 1            0 to π radians   (0° to 180°) 

  Arcsecant         (-∞,-1] ∪ [1, ∞)           0 to π radians, not including π/2 

  Arctangent         any real number          - π/2 to π/2 radians  (not including endpoints) 

  Arccotangent         any real number           0 to π (not including endpoints)  

                                                                            OR - π/2 to π/2, not including 0         

 

     Function  Derivative                                 Function                                Derivative 

     f(x) = sin-1x   
1

√1− x2
                                 f(x) = sec-1x                            

1

|x|√x2−1
                    

     f(x) = cos-1x   
−1

√1− x2
                                 f(x) = csc-1x                             

−1

|x|√x2−1
 

     f(x) = tan-1x    
1

1 + x2
                                       f(x) = cot-1x                             

−1

1 + x2
               

 

 

By now it will be easy for you to find the derivative of y = sin x, but what is the derivative of the 

inverse sine function?  At this point you may not quite remember what an inverse sine function 

even is, so let’s do a quick review. 

If we have an angle of π/6 radians (30 degrees), we can figure out that the sine is ½.  The 

inverse sine function takes the value of the sine, and gives us the angle.  The inverse sine 

function is called the arcsine, and it is often written, confusingly, as sin-1x.  This does not mean 
1

sin x
, which is the cosecant.  If we know that the sine of an angle is ½, we might guess that the 
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angle is π/6 radians.  However, it could also be 5π/6 radians (150°), or 2 1/6 π radians, or….  The 

possibilities are endless because the sine function repeats endlessly.  An inverse sine function 

can only be created by taking a portion of the sine curve that is small enough that it does not 

return multiple angles for a given value of sin (x).  The part that is used for this purpose is the 

portion of the sine curve between - π/2 and π/2 radians (-90° to 90°).  This may seem a bit hard 

to remember, but just think about what part of the unit circle you would choose if you were in 

charge.  You would have to allow for the full range of values of the sine, which is from -1 to 1.  

You could start that at π/2 and go to 
3𝜋

2
 radians, but chances are that you’d leave it right where 

it is now just to avoid all those awkward fractions in between.  As a result, the inverse sine 

function, also known as the arcsine function, will always return angles between - π/2 and π/2 

radians.  Any sine value is a valid input for this function.  Recall that the sine is always between  

-1 and 1, so to avoid getting a reproachful error message from your calculator don’t try to stick 

inappropriate values into the arcsine function. 

In the same way, mathematicians have defined an inverse cosine function, which returns angles 

between 0 and π radians.  Again the input had to be between -1 and 1, so the most convenient 

interval to choose was 0 to π radians.  This allows for the full range of values of the cosine, and 

returns one unique angle for each one.   

If you look at the tangent function, you can see that over the interval - π/2 to π/2 radians the 

tangent goes from its minimum value (-infinity) to its maximum value (+infinity).  Here again 

there are other intervals you could choose, but - π/2 to π/2 is the most convenient one.  The 

arctangent function gives you angles between - π/2 and π/2 radians for any tangent value you 

enter.   

                                   Domain                          Range  

  Arcsine         -1 to 1           - π/2 to π/2 radians  

  Arccosecant         (-∞,-1] ∪ [1, ∞)         - π/2 to π/2 radians, not including 0 

  Arccosine         -1 to 1            0 to π radians  (0° to 180°) 

  Arcsecant         (-∞,-1] ∪ [1, ∞)           0 to π radians, not including π/2 

  Arctangent         any real number          - π/2 to π/2 radians  (not including endpoints) 

  Arccotangent        any real number            0 to π (not including endpoints) 

The range of the inverse cotangent function can also be - π/2 to π/2 radians (not including 

endpoints) just like the inverse tangent, but many people prefer 0 to π so that the range is 

continuous. 
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As with any pair of inverse functions, sin(sin-1 x) = x and sin-1(sin x) = x.  Be careful though, as 

sin(sin-1 2) is not equal to 2 because of the restricted domain of the arcsine function. 

We can find the derivative of the inverse sine function using the methods we just learned for 

finding derivatives of inverse functions. 

Consider y = sin x and yinv = sin-1x.  To take the derivative of yinv, we would use the general 

formula     f’(x) = 
1

g′(f(x))
, which in this case looks like y’inv = 

1

y′(yinv)
. 

y’inv = 
1

cos yinv
 = 

1

cos(sin−1x)
 

Hmm, that is not so convenient.  First we have to find the angle that goes with x, and then take 

the cosine of it.  Fortunately we can do this rather easily by drawing a triangle to represent the 

situation.  If we want the inverse sine of x, that means we are looking for some angle that has a 

sine of x.  The simplest way to draw that would be to give the triangle a hypotenuse of 1 and an 

opposite side of x: 

 

 

By looking at the picture carefully you can see that the cosine of that same angle is √1 −  x2. 

The disadvantage of such pictures is that they do not show potential negative square roots.  In 

this particular case that doesn’t matter, because the cosine is positive for the entire range, or 

output, of the inverse sine function.  Do not forget to check for negatives if you are using a 

picture!   

We can do the same thing without drawing a picture because we know the relationship 

between the sine and the cosine:  sin2x + cos2x = 1.  Simple algebra tells us that cos x = 

±√1 −  sin2x.  Here the cosine will be positive so we can say that cos x = √1 −  sin2x.  So, 

instead of taking the cosine of (sin-1x) we can take √1 − sin2(sin−1x).  This really means 
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√1 −  (sin(sin−1x))2.  If you feel comfortable with the idea that sin(sin-1 x) = x, you can easily 

convert this to √1 −  x2.  If you don’t feel comfortable, try it out with some real angle values 

until you do.  The result of this substitution is: 

y’inv = 
1

cos yinv
 = 

1

cos(sin−1x)
 = 

1

√1− x2
 

You probably can’t wait  to see if you get the same result using implicit differentiation, so let’s 

try that: 

y = sin-1x 

x = sin y 

1 = cos y y’ 

y’ = 
1

cos y
 = 

1

cos(sin−1x)
 = 

1

√1− x2
 

You can use these same methods to find the derivative of the inverse cosine function.  Try it out 

for yourself.  Use the fact that the sine is never negative over the range of the inverse cosine 

function. 

With a little imagination you can also find the derivative of the inverse tangent function.  Just 

divide both sides of sin2x + cos2x = 1 by cos2x to change this identity to tan2x + 1 = sec2x. 

 

Function  Derivative 

f(x) = sin-1x  
𝟏

√𝟏− 𝐱𝟐
 

f(x) = cos-1x  
−𝟏

√𝟏− 𝐱𝟐
 

f(x) = tan-1x    
𝟏

𝟏 + 𝐱𝟐
 

 

Example 

Find the derivative of f(x) = tan(arcsin x). 
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Arcsin x is the same as sin-1 x.  First take the derivative of the function as it is written:   

f’(x) = sec2(arcsin x) ∙ 
1

√1− x2
.  sec2(arcsin x) means (sec(arcsin x))2, so we can simplify sec(sin-1 x) 

and then square it.  Look at the picture above to see that sec(sin-1 x) = 
1

√1− x2
.  Now square that 

to get 
1

1−x2
, so the final answer is 

1

1−x2
 ∙ 

1

√1− x2
 which is the same as (1 – x2)-3/2. 

 

Example 

Find the derivative of the inverse trigonometric function f(x) = arcsec x. 

If y = sec-1 x, then x = sec y.  Differentiate implicitly: 

1 = (sec y) (tan y) (y’) 

1 = sec (sec-1 x) tan (sec-1 x) y’ 

y’ = 
1

x ∙ tan (sec−1x)
 

From the identity tan2x + 1 = sec2x, we get that tan x = ±√sec2x − 1.  Unfortunately the 

tangent can actually be negative over the range of the inverse secant function, which runs from 

0 to π, not including 
π

2
. 

y’ = 
1

x ∙ (±√sec2(sec−1x)−1)
 

That doesn’t look nice at all, but we can fix it by realizing that the tangent will be negative only 

for negative values of x.  When x is negative, we’ll get y’ = 
1

x ∙ (−√sec2(sec−1x)−1)
, which is  

positive because we are multiplying by a negative x.  When x is positive, y’ = 
1

x ∙ (+√sec2(sec−1x)−1)
, which is also positive.  This means that we can just indicate that the 

expression will be positive by using the absolute value of x: 

y’ = 
1

|x|√x2−1
. 

When you look at the graph of the inverse secant function, you can see that it is increasing over 

its entire range, so the derivative must be positive.  Just like the function, the derivative doesn’t 

exist at x = 0. 
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In the same way, you can show that the derivative of the inverse cosecant function is 
−1

|x|√x2−1
. 

 

Example 

Find the derivative of the inverse trigonometric function f(x) = arccot x. 

y = cot-1(x), so x = cot y.  Again implicit differentiation provides the fastest result: 

1 = -csc2(y) y’ 

y’ = 
−1

csc2y
 

y’ = 
−1

csc2(cot−1(x))
 

Since csc2x = cot2x + 1: 

y’ = 
−1

cot2(cot−1(x)) + 1
 

That may look a bit confusing, but just rewrite it to show what it actually means: 

y’ = 
−1

(cot(cot−1(x)))
2

+ 1
 

y’ = 
−1

x2 + 1
 

There is no concern here about whether the cotangent is positive or negative, since we didn’t 

have to take a square root. 
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Riemann Sums 
 

 

 

  Riemann Sums use rectangles or trapezoids to estimate the area under a curve. 

  Rectangles:  Use f(x) at the start, middle or end of each interval as required.   

  Trapezoids:  Use the average value of f(x) over the interval.                         

  The real area is lim
n→∞

∑ f(xi)Δxn
i=1   = lim

n→∞
∑ f(a +  iΔx)Δxn

i=1 , where Δx = 
b−a

n
. 

  Use these summation formulas:       ∑ cin
i=1  = c ∑ in

i=1  

                                                                  ∑ in
i=1  = 

n

2
 (1 + n) 

                                                                  ∑  i2n
i=1  = 

n(n+1)(2n+1)

6
 

 

 

 

The derivative makes a lot of practical sense when you think of it as speed, or more precisely, 

velocity (speed with direction).  To find the velocity you start with a distance vs. time graph, 

and take the derivative of the function that describes the motion.  Now consider the reverse:  

start with velocity and find the distance traveled.  We know that velocity = distance/time, so 

that means distance = velocity · time.  When the velocity is constant, the distance traveled is 

easy to find.  We simply multiply the speed by the elapsed time.  For example, 40 miles per 

hour times 10 hours = 400 miles.  Notice that this corresponds to the area under the velocity 

line:  
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If we want the distance traveled between two specific time points t1 and t2, we can multiply the 

velocity by t2 – t1.  The distance traveled between t = 8 hours and t = 10 hours is 40 mph ∙ 2 hrs 

= 80 miles.  For this graph such calculations are very easy. 

Take a look at the following velocity graph.  The speed is increasing at a steady rate.   

 

 

To get the distance traveled, we need to take the average speed over a certain time interval, 

and multiply it by the elapsed time.  Between t = 0 and t = 2 hours, the speed changes from 0 

mph to 40 mph.  The average speed over this time interval is 20 miles per hour, so the distance 
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traveled is 20 miles per hour · 2 hours = 40 miles.  Again notice that this corresponds to the area 

under the velocity line from t = 0 to t = 2. 

Next, consider this velocity graph: 

 

 

 

How can we find the distance traveled now?  One way to do that is to split up the total time 

interval between 0 and 2 hours into much smaller intervals.  Then we could estimate the 

average velocity during one small time interval, and multiply it by the time elapsed over that 

interval.  Then we go to the next interval and do the same, and so on until we are done, and 

then add everything together.  Does that sound tedious?  Welcome to Riemann Sums!  The only 

consolation I can offer you here is that this is just one brief section of your course. 

The area under a curve can represent far more than just “distance traveled”.  Anytime that a 

quantity can be calculated by multiplying two different variables, you can look at it as the area 

under a line or a curve.  For example, in physics, Work is Force times distance.  When the force 

is constant the work done is easy to calculate, but in some cases the force changes.  If it 

changes at a steady rate you’ll get a graph with a straight line and you can use the average 

force to determine the work done.  However, if the force changes at a changing rate your graph 

will be a curve, and the area is not so easy to find.  There are many practical uses for areas 

under curves, but a very important one is in determining the proper dosages of medicines.  

When you take a pill, not all of the medicine is absorbed, and your body begins to eliminate 

what does get absorbed.  The total effective amount of that drug is determined by its 

concentration in your blood over time.  When researchers graph that the result is usually a 

curve, so they must find the area underneath that curve to determine the right dosage.    
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When you use Riemann Sums, you will be dividing the area under a curve into a limited number 

of sections, called intervals.  Sometimes you will use the function value at the start of each 

interval to do the estimate.  This is often called using left endpoints.  You may also be asked to 

use the function value at the end of each interval, in which case you are using right endpoints.  

Right endpoints are shown below.  Notice that the area will be overestimated because the 

function is increasing. 

 

  

At other times you will use the x-coordinate in the middle of the interval to estimate the value 

of the function for the entire interval.  This is called using midpoints.  You may think that 

midpoints provide a more accurate estimate of the area under the curve.  This is in fact true 

when you are using a limited number of intervals.   

Rather than creating rectangles to approximate the area under a curve, we can use trapezoids.  

That creates a nicer fit.  As you may recall from geometry, the area of a trapezoid is found by 

taking the average of the two bases and multiplying that by the height.  Because the trapezoids 

here are thin and the bases form the sides, you may not initially recognize them as trapezoids.  

The picture below shows just four intervals using the trapezoidal method, because I don’t have 

the patience to draw more.  All you need for your calculation is the function value at the start 

of the interval, and at the end.  Take the average, and multiply it by the width of the interval, 

which is actually the height of the trapezoid. 
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If you don’t like the calculations that come with this method, you can find the Riemann Sum 

using right endpoints and the Sum using left endpoints, and then take the average of the two 

Sums.  That gives the same result. 

 

Example 

Estimate the area under the curve y = 10x2, between x = 0 and x = 2, using the right 

endpoints (the ending values) of 4 separate intervals. 

You may notice that this is the actual curve shown in the previous illustration.  To do this right-

endpoint estimate, we pretend that the y-value over the entire interval is the same as it is at 

the right endpoint.  The total x-distance is 2, and we need to divide that into 4 equal sections, 

creating 4 rectangles like this: 
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The length of each section is 2 divided by 4 or 
1

2
.  The first interval runs from x = 0 to x = 

1

2
.  At 

the end of this interval, y = 10 ∙ (
1

2
)

2
= 

10

4
.  At the end of the second interval, y = 10 ∙ 12.  The 

end of the third interval has a y-value of 10 ∙ (
3

2
)

2
= 

90

4
, and at the end of the fourth interval we 

have a y-value of 40.  The area would then be composed of 4 rectangles with the following 

areas: 

1

2
 ∙ 

10

4
 = 

10

8
 

1

2
 ∙ 10 = 5 

1

2
 ∙ 

90

4
 = 

90

8
 

1

2
 ∙ 40 = 20 

The total area is 25 + 
100

8
 = 37.5. 

 

Your calculus course will take the trouble to impress upon you that the more intervals you use, 

the more accurate your estimate becomes.  From here, it is not such a big leap to think that we 

could get a really accurate value for the area under the curve if we used infinitely many, 

infinitely small intervals.  When you do that, it no longer matters whether you use right 

endpoints, left endpoints, or midpoints, since each interval is infinitely small. 

 

Example 

Find an expression for the area under the curve y = 10x2, between x = 0 and x = 2, using 

the right endpoints of n separate intervals. 

This problem is really the same as the previous one; it is just more general.  The total x-distance 

is still 2, and we need to divide that into n equal sections.  Therefore the width of each section 

is 2 divided by n or 
2

n
.  The first interval runs from x = 0 to x = 

2

n
.  At the end of this interval, y = 

10 ∙ (
2

n
)

2
.  That is straightforward, but where is the end of the second interval?  If you think 

about it for a bit you will see that it is easiest to figure things out like this:   
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end of first interval:  
2

n
 

end of second interval:  
2

n
 +  

2

n
 =  

2∙2

n
 

end of third interval:  
2

n
 +  

2

n
 + 

2

n
 = 

2∙3

n
 

end of fourth interval:  
2

n
 +  

2

n
 + 

2

n
 + 

2

n
  =  

2∙4

n
 

Because this goes up in a nice orderly way, we can use a counter variable.  The letter n has 

already been used in this problem, but we can turn to something from computer science.  The 

increment counter i is commonly used in iterations, where the program instructs the computer 

to repeatedly perform a task (and increase the value of i by 1) until the counter i reaches a 

preset value.  Because i is already in use for the imaginary numbers, you may instead see j, k or 

some other variable.  Caution:  when using i as a counter, do not square it to get -1! 

End of ith interval:  
2∙i

n
 

 We calculate the area of each rectangle, until the counter i reaches n (there are n intervals, so 

n rectangles).  Each time, the area of the rectangle is the width times the height, or 
2

n
 times  

10 ∙ (
2i

n
)

2
.  The first value of i is 1, so the area of the first rectangle is 

80

n3
.  Once we are done, or 

even while we are working, we add all of the areas together.  There is a nice shorthand notation 

for this.  We need “the sum of”  
2

n
 ∙10(

2i

n
)

2
, for i = 1 to i = n.  The sum can be indicated by the 

Greek letter S, Σ, which unfortunately is a bit scary-looking (no offense to the Greeks).  The final 

notation is ∑
2

n
 ∙ 10 (

2i

n
)

2
n
i=1 , which then simplifies to ∑

80i2

n3
n
i=1 .  Notice that the counter 

values are indicated from i = 1 at the bottom to simply n at the top.  Let’s check out this 

expression for 4 intervals, because that is what we used before.  n is a variable which will have a 

value of 4 in this case, but i is a counter that changes with each step.  For the first interval, i = 1, 

for the second interval i = 2, and so on: 

80∙1

43
 + 

80∙4

43
 + 

80∙9

43
 + 

80∙16

43
 =  

10

8
 + 

40

8
 + 

90

8
 + 

160

8
 = 

300

8
 = 37.5 

 

 

To apply the idea of limits to integrals, we will use n intervals rather than some definite number 

like 4 or 10.  Now the area under the curve becomes the limit of the Riemann Sums as n goes to 
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infinity.  The idea is simple, but just like with a limited number of intervals the details are a bit 

tedious to work out. 

To get the area under the curve from x = a to x = b, we will divide up the distance b – a into n 

intervals that are Δx wide.  At the end of each interval (right endpoints), we will evaluate f(x).  

All of these different x values for which we need to find f(x) will be distinguished by a subscript:  

x1, x2, x3, etc., or in general, xi.  So, for the general interval where the ending x value is xi, the 

area of that section is f(xi), the height, times the width, Δx.  To get the total, we sum up all of 

the separate areas: 

f(x1) Δx + f(x2) Δx + f(x3) Δx + f(x4) Δx + f(x5) Δx + … + f(xi) Δx 

There are a total of n terms here, because we are using n intervals.  As a shortcut, we use 

summation notation to write this: 

∑ f(xi)Δxn
i=1  =  f(x1) Δx + f(x2) Δx + f(x3) Δx + f(x4) Δx + f(x5) Δx + … + f(xi) Δx 

Here the summation notation uses a counter, i, with the count starting at i = 1 and ending when 

i is equal to n.  Now we can say that the area A is equal to the limit, as n goes to infinity, of 

∑ f(xi)Δxn
i=1 , which is the important part.  If I had a choice, I would want to stop right here and 

continue on to integrals.  If you have a choice, I suggest you do the same. 

To actually do the calculations, you need to keep in mind that Δx is equal to 
b−a

n
, because that 

is the width of each interval.  The end of the first interval occurs at an x-value of a + Δx, the end 

of the second interval is at a + 2Δx, the end of the third is at a + 3Δx, and so on.  The end of 

each interval in general is at a + iΔx.  If we determine the function value at the end of each 

interval, that would be f(a + iΔx).  So, we have to find the sum, ∑ f(xi)Δxn
i=1 , which is 

∑ f(a +  iΔx)Δxn
i=1 , or ∑ 𝐟 (𝐚 +  𝐢

𝐛−𝐚

𝐧
)

𝐛−𝐚

𝐧

𝐧
𝐢=𝟏 . 

To use left endpoints, we need to measure f(x) at the beginning of each interval.  In that case, 

we want to start at a rather than at a + iΔx.  This can be accomplished by setting a starting value 

of 0 for i:  ∑ f(a +  iΔx)Δxn−1
i=0 .  Notice that the ending value is now n – 1.  

 

Example 

Find the area under the graph of y = x2, from x = 1 to x = 2, using right endpoints. 
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The area is the limit, as n goes to infinity, of ∑ f(xi)Δxn
i=1 .  Using right endpoints, we can write 

that as lim
n→∞

∑ f(a +  iΔx)Δxn
i=1  or  lim

n→∞
∑ f(1 +  iΔx)Δxn

i=1 , since x = 1 is our starting point for 

the interval from a to b. 

Δx is 
b−a

n
, or in this case 

2−1

n
.  Stick that into the sum, to get ∑ f (1 +  i

1

n
)

1

n

n
i=1 .  Because we 

know that f(x) is x2, we write that as ∑ (1 +  i
1

n
)

2 1

n

n
i=1 , which is just shorthand for 

(1 + 
1

n
)

2 1

n
 + (1 +  2 ∙

1

n
)

2 1

n
 + (1 +  3 ∙

1

n
)

2 1

n
 + … + (1 +  n ∙

1

n
)

2 1

n
. 

To calculate this sum, ∑ (1 +  i
1

n
)

2 1

n

n
i=1 , we should first simplify (1 +  i ∙

1

n
)

2 1

n
:   

1

n
(1 +  

i

n
)

2

= 
1

n
 (1 +  

i

n
) (1 + 

i

n
) = 

1

n
 (1 +

2i

n
+

i2

n2) = 
1

n
+

2i

n2
+

i2

n3
 

To actually be able to find the sum ∑
1

n
+

2i

n2 +
i2

n3
n
i=1 , you need to know a few things about 

sums.  The first thing to realize is that sums with a “+” sign can be split, because the order in 

which you add the terms doesn’t really matter: 

  ∑
1

n
+

2i

n2 +
i2

n3
n
i=1  = ∑

1

 n
n
i=1  + ∑  

2i

n2
n
i=1  + ∑  

i2

n3
n
i=1   

In general, ∑ a + bn
i=1  = ∑ an

i=1  + ∑ bn
i=1  

Next, if there is only a constant in your sum, you will be adding up that constant over and over 

till you get to the end.  ∑ 4n
i=1  = 4 + 4 + 4 + ….  , which is n ∙ 4 or 4n.   

∑ cn
i=1  = n ∙ c 

∑
1

n
 n

i=1  just means keep adding 
1

n
, since there is no i.  When you are finished with that you will 

have added up n times 
1

n
 for a total sum of 

n

n
, which is 1. 

That helps you understand what is going on, but is often easiest to factor things out of the sum 

to make it simpler.   

5 + 5x + 5x2, can be written as 5(1 + x + x2), and it doesn’t matter if there are n terms instead of 

three.    

You can also find ∑
1

n
 n

i=1 by factoring out 
1

n
, because here n represents a number that will 

remain constant for each iteration (each increase of the counter). 
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∑
1

n
 n

i=1 = ∑
1

n
 n

i=1 ∙ 1 = 
1

n
 ∑ 1 n

i=1  

1

n
 ∑ 1 n

i=1  = 
1

n
 ∙ n = 1. 

[As you are looking at all of this it may seem to make sense, but when you are working by 

yourself you may notice that you can factor out 
1

n
, and then let n go to infinity.  Won’t that 

cause a multiplication by zero?  Well, 
1

n
 is not actually zero because we are talking about a limit, 

and the associated sum is also a limit.  For 
1

n
 ∑ 1 n

i=1 , 
1

n
 is heading to zero as n gets ever larger, 

while ∑ 1 n
i=1 is going to infinity.  The limit of the whole thing is 1.] 

The same goes for ∑
2i

n2
n
i=1 , which really means 

2

n2 ∙ 1 + 
2

n2 ∙ 2 + 
2

n2 ∙ 3 + … + 
2

n2 ∙ n or 

2

n2 (1 + 2 + 3 + … + n) 

So, for ∑
2i

n2
n
i=1  you can factor out 

2

n2
.  The counter, i, cannot be factored out because it has a 

different value for each term.   

∑ cin
i=1  = c ∑ in

i=1  

That leaves you with 
2

n2
∑ in

i=1 .  

∑ in
i=1  means start with i = 1, and keep adding until i = n:  1 + 2 + 3 + 4 + … + n.  The method for 

adding up a series like this was discovered by a young student who was told to add up the first 

100 counting numbers.  He could have done that the hard way, but he was smart and realized 

that these numbers come in pairs.  The first number plus the last number add to 101.  The 

second number, 2, and the second-last number, 99, also add to 101.  This holds all the way, so 

that the two middle numbers, 50 and 51 again add up to 101.  All we really have to do is say 

that there are 50 pairs of numbers, each with a sum of 101.  The sum is 5050.  That sure beats 

adding all those numbers one by one!  The formula for using this trick with n numbers would be  
n

2
 (1 + n):   

∑ in
i=1  = 

n

2
 (1 + n) 

So, 
2

n2
∑ in

i=1  = 
2

n2
 ∙ 

n

2
 (1 + n).  That last part can be multiplied out: 

2

n2
 ∙ 

n

2
 (1 + n) = 

2n

2n2
 + 

2n2

2n2
 = 

1

n
 + 1 
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That takes care of the first two sums, ∑
1

n
 n

i=1 and ∑
2i

n2
 n

i=1 .  So far we have 1 + 
1

n
 + 1.  Now for 

the last sum, ∑  
i2

n3
n
i=1 .  Again you can see that you may factor out 

1

n3
, to get 

1

n3
 ∑  i2n

i=1 .  If you 

let i increase by one each time, and square it, you get the series 1 + 4 + 9 + 16 + … + n2.  

Fortunately there is a formula for the sum of the first n squares, which is 
n(n+1)(2n+1)

6
: 

∑  i2n
i=1  = 

n(n+1)(2n+1)

6
 

By using this formula we can say that 
1

n3
 ∑  i2n

i=1  = 
1

n3
 ∙ 

n(n+1)(2n+1)

6
.  If you multiply that out 

you get 
2n3+3n2+1

6n3
, which can be split up into separate fractions and simplified:  

1

3
 + 

1

2n
 + 

1

6n3
. 

There, the total sum ∑
1

n
+

2i

n2 +
i2

n3
n
i=1  is equal to 1 + 

1

n
 + 1 + 

1

3
 + 

1

2n
 + 

1

6n3
.  If you can still 

remember what you were trying to do when you started this problem, you can now take the 

limit of that as n goes to infinity:   

lim
n→∞

∑
1

n
+

2i

n2 +
i2

n3
n
i=1  = lim

n→∞
 1 + 

1

n
 + 1 + 

1

3
 + 

1

2n
 + 

1

6n3
 = 1 + 0 + 1 + 

1

3
 + 0 + 0 = 2 

1

3
.   

The area under the curve y = x2 from x = 1 to x = 2 is 2 
1

3
.  Like for most Riemann sum problems, 

finding the answer was long and tedious.  In the next section we’ll see how much easier it is to 

solve this same problem by using integrals.  

 

 

 

Integrals 
 

 

  The Fundamental Theorem of Calculus, Part I: 

  The function f(x) is the derivative of the area underneath it:  
dA

dx
  = f(x)      

  To find the area A, we use the antiderivative of f(x). 
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  The Fundamental Theorem of Calculus, Part II: 

  ∫ f(x)dx
b

a
 = F(b) – F(a)     where F(x) represents the antiderivative of f(x). 

 

  Note that ∫ f(x)dx
b

a
 = – ∫ f(x)dx

a

b
. 

 

 

For many years I thought that poor Mr. Riemann was going to all that trouble to calculate 

Riemann Sums because he didn’t know about integrals.  However, Bernhard Riemann was born 

in 1826, which is just about an entire century after the death of Isaac Newton!  What Riemann 

Sums do is help us understand integrals and see them as a limit (as n goes to infinity) of the sum 

of the areas of n rectangles.  At this point you might also suspect that Professor Riemann had 

an ulterior motive, since a hefty dose of Riemann Sums is sure to make any student appreciate 

integrals. 

So, how were integrals discovered?  The story of integrals actually began with infinitely small 

differences. 

We know we want the area under a curve.  When we say “under” we mean the area between 

the curve and the x-axis.  If the function is positive that area will be positive.  When the function 

value is negative the area we are interested in is below the x-axis, and it is considered to be a 

negative area. 
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Now that we are clear on that, let’s actually find the area under a curve.  Using the principles of 

calculus, we consider how the area grows.  That is, we want to look at dA, an infinitely small 

increase in the area under the curve.  How is dA related to an infinitely small increase in x, the 

distance along the x axis?  If you have worked with Riemann Sums for a bit, you should be able 

to see that as x increases by an infinitely tiny amount dx, the area under the curve increases by 

an infinitely tiny strip with an area equal to f(x) times dx:  

dA = f(x)dx 

In the picture below, dA is represented by a thin blue line: 

 

 

 

The next image shows the detail of dA, the infinitely thin strip that represents the increase in 

the area.  The width of the strip is dx.  The length on the left side is y, which is f(x), and on the 

right it is y + dy.  Back in the section “The Idea of Calculus”, we said that because dy is infinitely 

small, y + dy = y, so both lengths are the same.  As a result, we can calculate that the area of 

each strip is ydx, or f(x)dx. 
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We also said that if you cut something up into infinitely many infinitely tiny pieces you can put 

it back together by taking the sum of those pieces.  Therefore A, the area we want, is equal to 

∫ dA.  Recall that the fancy symbol ∫ is just the letter S and it stands for Sum, in this case the 

sum of all the infinitely tiny dA’s.  This sum is called an integral.  All we are doing here is 

dividing the area under the curve up into infinitely tiny strips and then adding the areas of all of 

the strips together.  Because dA = f(x)dx, ∫ dA should be equal to ∫ f(x)dx.  So now we have: 

dA = f(x)dx 

∫ dA = ∫ f(x)dx 

A = ∫ f(x)dx 

Well that’s nice, but f(x) is probably different at every spot along the curve.  This looks like the 

worst Riemann sum of all time, since there are infinitely many intervals dx and the area of the 

rectangle for each one would have to be calculated.  That seems impossible, but the good part 

is that the final result would also be the most accurate Riemann sum ever.  In fact, it would be 

perfectly accurate. 

Actually, it is possible to calculate this sum, and it isn’t even hard to do.  The key is that  

dA = f(x)dx.  That means that 
dA

dx
 = f(x).  It may not jump out at you when it is written in symbols 

like this, but this actually says that f(x) is the derivative of the area underneath itself!  
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That must have been very exciting for the people who first discovered it, because it provides an 

amazingly easy way to find the area underneath a curve.  If we know that f(x) is the derivative 

of the area (the rate of change of the area), then all we have to do to get the actual area is to 

find an antiderivative of f(x).  That is, we find the function that has f(x) as its derivative. 

A = ∫ f(x)dx = the antiderivative of f(x) 

Let’s see how this works.  In particular, we might want to find the area under the parabola  

y = x2 which was a major headache for mathematicians to obtain before the discovery of 

calculus.  In this case f(x) = x2, so the derivative of the area under this curve is x2.  How can we 

make a function that has the derivative x2?  A little trial and error will tell you that F(x) = 
1

3
 x3 

would do the job.  We say that 
1

3
 x3 is the antiderivative of x2.   The antiderivative is often 

indicated by using a capital F as opposed to the lowercase f we usually use for functions.  So 

there you are; the area under the curve can be calculated by using this function:   

A = 
1

3
 x3. 

f(x) is the derivative of the area underneath its graph, and therefore the area under the graph 

is the antiderivative of f(x).  This discovery is so important that it has been designated as the 

Fundamental Theorem of Calculus, part I.  Sadly, most calculus courses fail to convey how 

exciting this is (or even how anyone might find calculus exciting in any way), but it is really 
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amazing that we can find the exact areas underneath curves, and it has many useful practical 

applications. 

 

Since A = 
1

3
 x3, when x = 0 the area is 0, and when x = 1 the area is 

1

3
.  So, the area between 0 

and 1 is 
1

3
.  If I wanted the area between 0 and 2, I would plug 2 into the formula and get A = 

8

3
.  

This simple new method turned out to be useful to find many quantities that can be 

represented by the area under a curve, and it resulted in many important advances in science 

and technology. 

The Fundamental Theorem of Calculus makes sense when you think about it in terms of 

position and velocity.  For example, consider this graph: 

 

 

If you walked for 4 hours, at a leisurely speed of 2.5 miles per hour, you would cover a distance 

of 10 miles.  The area under the curve represents the distance covered (the change in your 

position).  As we just saw, we can find this area by using an antiderivative.  By looking at the 

graph you can see that the function pictured is f(t) = 2.5, where t is the time and f(t) represents 

the speed.  It is easy to find something that has 2.5 as its derivative:  2.5t would do nicely.  So 

the area (as a function of time) can be represented by the formula A = 2.5t.  When t = 4 the 

area is 10, as expected. 

An average speed of 2.5 miles per hour would allow you to cover the same distance: 
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Looking at this graph, I would say that the slope of the line is 5/4.  f(t) = 
5

4
 t would be the 

function that represents the speed in this case.  Simple geometry tells you that the area under 

the graph is ½ the base times the height of the triangle, which is 10 (miles).  To get the same 

result using calculus, you should find an antiderivative for 
5

4
 t.  

5

4
 t2 doesn’t quite fit because its 

derivative is too big.  Try 
5

8
 t2 and you should find that it is just right.  When A = 

5

8
 t2 the area will 

be 10 when t = 4. 

Regardless of the shape of a velocity curve, the area underneath it represents the net change in 

position.  However, because an area under the x-axis is considered negative, the change in 

position may not represent the total distance traveled.   

Just as the velocity is the derivative of the position curve, the position function is the 

antiderivative of the velocity curve. 
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Now, how would you find the area between x = 1 and x = 2 underneath the curve y = x2?  Stop 

and think about it for a bit before you continue reading.    

Using the formula A = 
1

3
 x3  you would probably calculate it like this:  

8

3
 – 

1

3
 = 

7

3
.  In fact, if you wanted to know the area between any two values of x, say x = a and  

x = b, you would calculate the area at b and subtract the area at a.  The area between a and b 

would be 

1

3
 b3 – 

1

3
 a3. 

This idea, which you could easily come up with yourself, is the Fundamental Theorem of 

Calculus, part II.  F(x) is the antiderivative of f(x), and  F(x) is the function that represents the 

area underneath f(x).  If we want the area between a and b, we find it as follows:  F(b) – F(a). 

Since we will often want the area between two specific points we add them to our integral 

notation, so we write the area from point a on the x-axis to point b on the x-axis as ∫ f(x)dx
b

a
. 

∫ 𝐟(𝐱)𝐝𝐱
𝐛

𝐚
 = F(b) – F(a)     where F(x) represents the antiderivative of f(x), and f(x) is the 

derivative of F(x). 

 

If you look closely at the narrative above, you may see that I omitted something.  I presented  
1

3
 x3 as the antiderivative of x2.  Actually, there is another antiderivative that would do the same 

job.  Consider F(x) = 
1

3
 x3 + 4.  The derivative of this function is also x2.  Can we describe the area 

under the curve using this function instead?  Well, let’s try it out. 

A = 
1

3
 x3 + 4 

When x = 0, A = 4.  Hey, wait a minute, how can that be 4 when it looks like it should be 0 from 

the graph?  You can think of this as an “initial condition”.   Suppose some object has already 

traveled a distance of 4 units, and from here on it will travel a distance given by the area 

underneath y = x2.  So, when x = 1, A = 4 + 
1

3
.   Between x = 0 and x = 1 the area would be 4 

1

3
 – 4, 

which is still 
1

3
.  In fact, any function A = 

1

3
 x3 + C, where C is a constant, would allow us to 

calculate the area below the curve.  
1

3
 x3 + C is the general antiderivative of x2.  To make sure 

they include all of the possibilities, mathematicians write ∫ f(x)dx = F(x) + C for a general 

integral with no specific endpoints.   
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For integrals between two specific points, like ∫ f(x)dx
b

a
, the constant C cancels out: F(b) + C – 

(F(a) + C) = F(b) – F(a).  After having to remember to write C’s every time you solve an integral, 

you’ll be happy to get rid of C.  For future reference though, you need to understand that C 

does not actually disappear.  The initial condition represented by C in a real-life situation is 

always there, but it doesn’t matter when you look at the cumulative result of changes that 

happen between two points.  Well, maybe “doesn’t matter” isn’t exactly right.  If you have 

already walked 10 miles, and then I use an integral to calculate that you walked an additional 

mile between an arbitrarily set time t = 0 and t = 1, 10 miles cancels out but you’ll still feel like 

you walked 11 miles. 

Try all this out with a simple problem like “find the area underneath f(x) = 5, from x = 3 to  

x = 7.  This problem doesn’t require calculus at all, so do it first without, and then with calculus.  

Use simple geometry to get the area from 0 to 7, and then the area from 0 to 3.  Subtract the 

two values to get the area between 3 and 7, which should be 20. 

In calculus notation it works like this: 

The antiderivative of 5 is 5x (or 5x + C if you are just considering that in a general way).  To find 

the area between 3 and 7, we take the area at x = 7 and subtract the area at x = 3: 

∫ 5dx
7

3
 = 5x, evaluated at 7, minus 5x evaluated at 3.  That works out to  5 ∙ 7 − 5 ∙ 3 = 20.  The 

shorthand notation for this is 5x [
7
3

  = 5 ∙ 7 − 5 ∙ 3 = 20. 

If you understand how this works, you can also see that ∫ 5dx
3

7
 = -20.  The area isn’t negative in 

a real sense, but we are looking in the opposite direction (from a larger x to a smaller x) so we 

get a negative value.  In general, ∫ 𝐟(𝐱)𝐝𝐱
𝐛

𝐚
 = -∫ 𝐟(𝐱)𝐝𝐱

𝐚

𝐛
. 

Another way to get a negative value for an integral occurs when the area under the function 

graph is below the x-axis.  Let’s find the area under f(x) = -5 from x = 3 to x = 7: 

∫ −5dx
7

3
 = -5x, evaluated at 7, minus -5x evaluated at 3.  That works out to  -5 ∙ 7 − −5 ∙ 3 =  

-20.  Again, the shorthand notation for this is -5x [
7
3

  = -5 ∙ 7 − −5 ∙ 3 = -20.  As expected, the 

area turns out to be negative. 

Example 

Find the area under the line of the function f(x) = 2x, from x = 0 to x = 5, using both 

calculus and Riemann sums.  Check your work using geometry. 
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First, let’s use calculus because it is the easiest here.  The area is the integral, from 0 to 5, of the 

function 2x.  Each infinitely small piece of the area is dx wide, and f(x) tall:  ∫ f(x)
5

0
 dx.  For this 

particular function the integral is ∫ 2x
5

0
 dx.  The antiderivative of 2x is x2, and we have to 

evaluate that at 0 and 5:  ∫ f(x)dx
b

a
 = F(b) – F(a)  so ∫ 2x

5

0
 dx = 52 – 02 = 25. 

Next, sigh, Riemann sums.  You may think that you don’t need them anymore, but they are still 

on the AP exam so you can’t forget them.  The width of the interval is 5, and we are dividing 

that up into n intervals.  Each interval is 
5

n
 wide, and when n is infinitely large that will 

correspond to dx.  We have to find the height of each rectangle at the end of each interval, so 

we have to plug the x value at that point into the function f(x) = 2x.  The end of the first interval 

is at x = 
5

n
, and the end of the ith interval is at 

5i

n
.  At that point the function value is 2 (

5i

n
).  Now 

add up all of the intervals, and take the limit as n goes to infinity: 

lim
n→∞

∑ 2 (
5i

n
) ∙

5

n
 n

i=1   

Notice that it is this expression that corresponds to ∫ 2x
5

0
 dx.  

lim
n→∞

∑
10i

n
∙

5

n
 n

i=1  = lim
n→∞

∑
50i

n2  n
i=1 = lim

n→∞
50 ∑

i

n2 n
i=1  

Recall that ∑ in
i=1  means the sum of the first n numbers, which is always 

n

2
 (1 + n).  ∑

i

n2 n
i=1 is 

n

2
(1+n)

n2
.  Simplify like this:  

n+n2

2

n2
 = 

n+n2

2n2
 = 

1

2n
+

1

2
.   

lim
n→∞

50 ∑
i

n2 n
i=1  = lim

n→∞
50 (

1

2n
+

1

2
) = 25. 

Geometry tells us that our answers are correct, because the area under f(x) = 2x from x = 0 to x 

= 5 is a triangle with a base of 5 and a height of f(5) which is 10.  Area = 
1

2
 ∙ 5 ∙ 10 = 25. 

 

Integral Basics  
 

 

   ∫ f(x)dx
b

a
 is a definite integral that will have a numeric value. 
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   ∫ f(x)dx is an indefinite integral.  Add a constant C when you integrate. 

   ∫ c f(x)dx = c ∫ f(x)dx. 

   The integral of a sum is the sum of the separate integrals:  ∫(x2 + x) dx = ∫ x2 dx + ∫ x dx. 

   ∫ f(x)dx
b

a
 = ∫ f(x)dx

c

a
 + ∫ f(x)dx

b

c
, even if c is not in the interval [a, b]. 

    

Now that you know what integrals are, your textbook will have you jump right in and start 

solving them.  Before you do that, let’s look at a few basic rules. 

At the beginning of this e-book, we saw that ∫ dx = x.  You can think of that as dividing some 

length x up into infinitely many, infinitely tiny pieces of length dx.  The length x is a changing 

quantity, and it grows by adding infinitely tiny amounts dx.  When you add up all of the pieces 

of size dx, you get x back.  A different way to think of that is to represent x as the area under a 

function graph.   

Consider the constant function y = 1.  The area under the graph from x = 0 to  

x = 7 is 7 ∙ 1 = 7.  That is written as ∫ 1
7

0
 dx, or ∫ dx

7

0
.  In this case you have already decided from 

where to where you want the area so you can specify the lower and upper limits of integration, 

0 and 7, and you get a definite integral that will have numerical value.  In general, we can find 

the area by using the integral ∫ 1 dx, which is called an indefinite integral.  If you are solving an 

indefinite integral, don’t forget to add in a constant, because the derivative of something like 2x 

+ 5 is the same as the derivative of 2x.  ∫ 2 dx = 2x + C. 

The method of calculus divides an area up into infinitely many infinitely thin strips.  For the area 

under f(x) = 1, each strip will have a height of 1 and a width of dx.  The sum of all of these strips 

will be ∫ 1 dx, which is equal to x (+ C).  Notice that the derivative of the area function is the 

function f(x) = 1.  The area function is the antiderivative of f(x) = 1. 

Now, suppose that we wanted to find the area under f(x) = 3.  We can again divide that up into 

strips with a width of dx, but now each strip will be 3 times as tall.  The sum is now ∫ 3 dx, 

which is equal to 3x (+ C).  Notice that this integral is 3 times as large as ∫ 1 dx: 

∫ 3 dx = 3 ∙ ∫ 1 dx 

In general, if you divide the area under any function graph up into strips of height y and width 

dx, you would expect that if you make all those strips three times as tall you would get three 
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times the area.  This means that you can take a constant that is inside the integral, and put it 

outside: 

∫ c f(x) dx = c∫ f(x)dx. 

If you stop and think about that, you can see that it is really using factoring: 

3y1dx + 3y2dx + 3y3dx + 3y4 dx + …  = 3(y1dx + y2dx + y3dx + y4 dx + …) 

 

It is also possible to find an integral of a function that contains a sum.  For example, y = x2 + x 

can be seen as a sum of two separate functions, f(x) = x2 and g(x) = x.  Just as you can take the 

derivative of these separate parts and add them up to get the derivative of the whole, you can 

get the integral of the sum by adding up the separate integrals: 

∫(x2 + x) dx = ∫ x2 dx + ∫ x dx 

That makes sense, because every y value of y = x2 + x is really composed of the two y-values of 

each function stacked on top of each other.  ∫(x2 + x) dx = 
1

3
x3 + 

1

2
x2 + C. 

 

∫(f(x) + g(x))dx = ∫ f(x)dx + ∫ g(x)dx. 

Also, ∫(f(x) − g(x))dx = ∫ f(x)dx – ∫ g(x)dx.   

It would be very nice if  ∫(f(x)  ∙  g(x))dx would be equal to ∫ f(x)dx ·∫ g(x)dx, but 

unfortunately that is not the case.  Just like when we tried to find d(uv) at the beginning of this 

book, a little math is required to come up with the right answer.  We’ll worry about that later, 

once you are more used to finding integrals. 

 

Using a Graphing Calculator to Find an Integral 
 

 

      To find a definite integral on the TI-84 calculator, go to the MATH menu and look for fnInt(. 

 

 

For the TI-83 and TI-84 calculator, you can go to the MATH menu and look for fnInt(.  On the 
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newer models you can just fill in the blanks on the integral that appears.  On the older models, 

enter the function, followed by a comma, followed by x, another comma, and the upper and 

lower limits of integration, separated by commas.  Then close the function parentheses and 

press ENTER. 

Online integral calculators are readily available.  Don’t hesitate to use them to check your work! 

 

 

The Area of a Circle 
 

 

   The area of a circle is ∫ 2πr dr = πr2. 

    

 

 

The formula for the circumference of a circle was discovered in ancient times when people 

wondered how many times the diameter of a circle would fit around the circumference.  They 

named this number π, and said that the circumference of a circle is πD, where D is the 

diameter.  This is where we get our formula C = 2πr. 

If we did not know how to find the area of a circle we could use calculus to discover the 

formula.  If the radius of a circle increases by an infinitely tiny amount dr, the infinitely tiny 

increase in the area of the circle, dA, would be the area of an infinitely tiny ring around the 

circle with a thickness of dr.  Normally you can’t quite change a ring into a rectangular strip, 

because the inner edge of the ring is smaller than the outer edge.  However, when you have an 

infinitely thin ring things are different.  The circumference of the ring at the inner edge is 2πr, 

and at the outer edge it is 2π(r + dr).  Since r + dr = r, both the inner and the outer edge have 

the same length.  We can turn the ring into a strip with width dr and length 2πr.  That strip, 

which represents the infinitely small change in the area, dA, has an area of 2πr ∙ dr.  dA = 2πr dr 

Now we can take the sum of all the tiny dA’s to get the whole area of the circle:   

A = ∫ dA = ∫ 2πr dr. 
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∫ 2πr dr is the antiderivative of 2πr, for which the simplest solution is πr2.  When we look at 

integrals as functions we will see that this is the only solution. 

 

 

 

 

Splitting an Integral into two Parts 
 

 

   ∫ f(x)dx
b

a
 = ∫ f(x)dx

c

a
 + ∫ f(x)dx

b

c
       c does not need to be between a and b 

    

 

 

Areas can easily be split up into two parts, and you would not be surprised to find that the area 

represented by ∫ 5dx
7

3
 could be written as ∫ 5dx

4

3
 + ∫ 5dx

7

4
.  What may be a little harder to 

imagine is that we can split the same integral up like this:  ∫ 5dx
7

3
 = ∫ 5dx

20

3
 + ∫ 5dx

7

20
.  That 

seems really strange because 20 is not even in the interval [3,7].  However, when you calculate 

it out you will find that the total area is 85 + (- 65) which is still 20. 

 

 

Absolute Value Functions 
 

 

   ∫ |f(x)|dx
b

a
 may differ in value from ∫ f(x)dx

b

a
.   

   Use a graphing calculator, or manually account for where f(x) changes signs. 
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Absolute value functions take the negative part of the corresponding regular function, and 

make it positive.  You cannot expect an integral to automatically account for this, although a 

graphing calculator will.  If you are permitted to use a calculator to find your integrals, you can 

actually use the absolute value function of your calculator inside the integral function and have 

it find the correct answer for you. 

There is no clever way to just find the area underneath say y = |2x − 3| from x = 0 to x = 5 

without a graphing calculator.  You have to figure out where the absolute value sign is changing 

the function from a negative value to a positive value, and then calculate the two areas 

separately.  The illustration below shows the area you want to calculate colored in green.  The 

red area is what will be included in your integral instead if you are not careful to account for the 

absolute value. 

 

 

|2x − 3| is 0 when 2x = 3, so the function value is zero when x is 1.5.  When x is less than 1.5 the 

function would be negative, but the absolute value sign makes it positive.  If you calculate the 

integral from 0 to 1.5 of 2x-3, you get ∫ (2x − 3)dx
1.5

0
 = (x2 – 3x) [

1.5
0

 = 2.25 – 4.5 - 0 = -2.25.  
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That is a negative value, because the area is below the x-axis.  Because you know you are 

dealing with an absolute value function and the area will be above the x-axis instead, you 

should take the negative integral:  

- ∫ (2x − 3)dx
1.5

0
 = 2.25.  Notice that the area marked in red in the figure actually is 2.25 (½ of 3 

times 1.5).  The larger area marked in green is a triangle with base 3.5 and height 7, so it should 

have an area of 
1

2
 ∙ 3.5 ∙ 7 = 12.25.   ∫ (2x − 3)dx

5

1.5
 is 12.25. 

∫ |2x − 3|dx
5

0
 = 2.25 + 12.25 = 14.5 

Absolute value integrals are particularly important for some applications.  For example, when 

you are looking for the distance traveled by some object, you may just think:  well, distance = 

velocity ∙ time.  If the velocity is not constant, I’ll just take the velocity during one small time 

interval dt, and then create an integral.  The distance traveled is the area under the velocity 

curve.  Unfortunately, velocity can be negative.  In this case the distance traveled is given by the 

absolute value of the area under the velocity curve.  When you are looking for distance traveled 

it is easiest to always just consider the absolute value of the velocity.  Make a habit of using an 

absolute value sign in your integral when working with velocity. 

 

Piecewise Defined Functions 
 

You may be asked to find the integral of a piecewise defined function.  Even if such a function 

has a jump discontinuity you can find the areas under each part separately and add them up.  

Due to the recent insertion of this topic into the AB curriculum that may not make much sense 

to you as one of the integrals doesn’t have a defined limit on one side.  That little problem is 

normally explained away in the BC course. 

 

Even and Odd Functions 
 

 

   For even functions, it is often convenient to find half the integral and then double it. 

   Odd functions, where f(-x) = - f(x), will have a zero value integral from -a to a. 
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Now that you know how to find the area underneath y = x2, you can calculate the area under 

this curve from -1 to 1.  That is equivalent to finding the value of the integral ∫ x21

−1
dx.  You 

should find that this area is 
2

3
, or exactly double the area from 0 to 1 that we calculated already.  

When you look at the graph you can see why:  y = x2 is symmetric about the y-axis.  Many 

functions are symmetrical like this so it is often faster to calculate half the area (starting at 0) 

and then double it.  You can recognize even functions, because they all have the property that 

f(x) = f(-x).  Just put –x into the function in place of x and see if you get the same result. 

Next, calculate the value of ∫ x32

−2
dx.  You should end up with a value of 0.  If you look at the 

graph of y = x3 you can see the reason for that:  f(x) = x3 is an odd function.  The area below the 

x-axis is exactly equal to the area above the x-axis so the two values cancel each other out.  If 

you rotate the graph around the origin 180 degrees, it looks exactly the same.  Odd functions 

are also easy to spot because f(-x) = - f(x).  For an odd function, the area under the curve from  

-a to a is always 0.  Remember that because it can save you a lot of work. 
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  The “Area so Far” function is A(x) = ∫ f(t) dx
x

a
. 

  We have to use the letter t because we can’t use x twice to do two different jobs.   

  t is a dummy variable that doesn’t appear in the final result:  ∫ f(t) dx
x

a
 = F(x) – F(a). 

 

 

 

∫ 2x dx
1

0
     ∫ 2x dx

2

0
     ∫ 2x dx

3

0
     ∫ 2x dx

4

0
     ∫ 2x dx

5

0
     ∫ 2x dx

6

0
 

These integrals form a steady progression.  Each integral represents a larger area than the last, 

and that value increases as we increase the number that makes up the upper bound of the 

integral.  Hmm, I could turn that into a function if I used a variable for the upper bound.  That 

way I could have a function that relates the area A to the upper bound.  Now, what variable 

should I pick for the upper bound?  Well, it is increasing along the x-axis, so I would probably 

pick x: 

A(x) = ∫ 2x dx
x

0
 

After all, that says what I want, the integral from 0 to x of 2x.  Or does it?? 

Unfortunately there is a bit of a problem with the variable x here.  It is quite fine to stick x in an 

equation or expression more than once, but once you pick a value for x that value should be the 

same everywhere.  For example, in the equation x2 – 5x + 6 = 0 you can select x = 3 or x = 2, but 

you can’t pick 3 for the first x and 2 for the second one.  You also can’t pick 3 for the first x and 

just leave the second x there.  So, if I am calculating the area under 2x, and I select x = 7 for the 

upper bound, I should get A(7), the area from 0 to 7 under 2x.  But oops, now that x = 7, 2x 

doesn’t just stay there.  It turns into 2(7) which is 14: 

A(7) = ∫ 2(7) dx
7

0
 = ∫ 14 dx

7

0
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If you compare the value of this integral with the intended one, ∫ 2x dx
7

0
, you will see that it is 

not the same at all. 

Let’s try again.  This time I will pick t for the variable of the upper bound, so this will be a 

function of t: 

A(t) = ∫ 2x dx
t

0
  

That should work, since I can now set t equal to any number without affecting 2x: 

A(t) = ∫ 2x dx
t

0
 = x2 [

t
0

 = t2 – 0 = t2 

Since this does work, I can start turning it into a more general function, using f(x) instead of the 

particular function 2x for the part inside the integral: 

A(t) = ∫ f(x) dx
t

0
 

Although this is workable and mathematically correct, there is a minor problem with the 

aesthetics of it.  A(t) is a function of t, and all of our other functions are functions of x.  

Physicists like to see things as a function of time, but mathematicians have a strong preference 

for functions of x, possibly because that just fits better into an x-y coordinate system.  Well, not 

to worry; a rose by any other name would smell as sweet.  We can just turn the variables 

around without changing the mathematical facts: 

A(x) = ∫ f(t) dx
x

0
 

A(x) is often called “the area so far” function.   

This is the official formula that goes into the textbooks, while everything else was the rough 

draft that ended up in the trash.  Your textbook may present this final version rather casually 

without much of an explanation as to where t came from.  Don’t be deceived, because the 

difference between t and x suddenly matters a lot when test time comes around. 

When we solve A(x) = ∫ f(t)dt
x

0
, we look for the antiderivative of f(t), which will be F(t), and 

evaluate that at t = x and t = 0 to get A(x) = F(x) – F(0).  Notice that having an x in the upper 

bound doesn’t affect how the integral is evaluated.  It still works just like ∫ f(x)dx
b

a
 = F(b) – F(a), 

according to the Fundamental Theorem of Calculus.      

Because t does not appear in the final result, it is a considered a placeholder variable, 

sometimes called a “dummy variable”.   
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A(x), the “area so far” function, can also extend to negative values of x.  For A(x) = ∫ f(t)dt
x

0
, if x 

is smaller than 0 we are looking in the opposite direction, so if the area under the curve is 

positive over this interval, A(x) will actually have a negative value. 

It also does not matter if we actually start at 0, or at some other number: 

∫ 2x dx
1

−1
     ∫ 2x dx

2

−1
     ∫ 2x dx

3

−1
     ∫ 2x dx

4

−1
     ∫ 2x dx

5

−1
     ∫ 2x dx

6

−1
 

This sequence of integrals also represents an orderly change in the area, just like when we 

started at 0.  We can represent the “area so far” function as A(x) = ∫ f(t)dt
x

a
, where a is any 

constant. 

 

Example 

Let’s take a look at a dummy variable in action.  We will find the proper function for the area of 

a circle, which should look like A(r) = πr2.  Here you should note that we want a general 

function, not the area of a specific circle with a pre-determined radius.   First, we’ll create a 

circle with a radius r, which is 6 in the illustration below.  The variable r will represent the upper 

bound of the integral, which is the radius of the circle.  The function A(r) will return the area for 

any value of r.  However, during the actual process of integration r is not really changing.   
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To find the area, we divide the circle up into infinitely thin rings, one of which is shown in light 

blue in the picture above.  The circumference of this ring is 2π… oh, we can’t put r here because 

that is the radius of the whole circle, which is 6 right now.  We also can’t just say that the radius 

of this infinitely thin ring is 3, because we will need to create infinitely many of these rings, each 

with a different radius.  I guess we are going to need a different variable, which can’t be called 

r.  Let’s call it q.  Now each infinitely thin ring will have an area of 2πq times d….  Again we have 

to stop and think carefully what to put here.  The radius of the light blue ring is q, so if that 

increases by an infinitely tiny amount we would call that amount dq.  dA, the infinitely small 

area of this ring is 2πq dq.  Once we have that we can put all our infinitely tiny rings together to 

get the area of the whole circle.  The integral starts at 0, the center of the circle, and goes all 

the way to r, which is 6 in this particular case but could be any positive value.  q will be the 

variable of integration: 

A(r) = ∫ 2πq dq
r

0
  

That would be πq2, evaluated at r and 0:  πr2 – 0 = πr2 

A(r) = ∫ 2πq dq
r

0
 = πr2 

You can plug any value for r into this function, which means that r is a real variable.  As r 

increases, so does the value of the integral, because its upper bound increases.  q is the dummy 
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variable that does all the hard work inside the integral but gets none of the credit.  

 

 

 

The Derivative of the Integral Function 
 

 

  If F(x) = ∫ f(t) dx
x

a
, then  F’(x) = f(x). 

  F’(x) = lim
h→0

F(x+h)−F(x)

h
.  You could write that as lim

h→0

∫ f(t)dt
x+h

x

h
. 

   

 

 

A favorite test question is: 

A(x) = ∫ f(t)dt
x

0
, what is the derivative of A(x)? 

You might think that you’ll be allowed to be just as casual about these variables as your 

textbook and answer f(t), but you’d be wrong.  If you care about your grade or AP score, answer 

f(x)!  A(x) is a function of x, and its derivative will also be a function of x.  There is no reason to 

put the dummy variable into the derivative, since it is only there temporarily to help us find the 

actual integral.   

We just saw that A(r) = ∫ 2πq dq
r

0
 = πr2, so what is A’(r)?  Well, that is just 2πr, not 2πq. 

 

 

The derivative of an integral function is the same for any fixed lower bound of the integral, not 

just for x = 0.  Take for example, A(x) = ∫ 2t dt
x

0
.  A(x) is the antiderivative of 2t, which is t2, 

which needs to be evaluated at x and 0.  That gives A(x) = x2 – 0 = x2.   The derivative of that is 

2x.  Next, consider A(x) = ∫ 2t dt
x

5
, which is t2 [

x
5

  = x2 – 25.  Take the derivative of that, and it is 
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still 2x.  If you look at the pictures below, you can see that it doesn’t make a difference where 

the lower bound is.  The increase in area is still the infinitely thin light blue line, and the area of 

that is dA = f(x) dx.  Divide both sides by dx to get the derivative:  
dA

dx
 =  f(x). 

 

 
 

 
 

Now we can see that for any constant a, A(x) = ∫ f(t)dt
x

a
 has the derivative f(x). 
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U-Substitution for the Integral Function (Have integral, would 

like to trade for derivative.) 
 

 

 

  To find the derivative of A(x) = ∫ f(t) dt
x2

a
,  let x2 = u:     A(x) = ∫ f(t) dt

u

a
 

  
dA

du
 = f(u).  Use the chain rule:  

dA

dx
 = 

dA

du
 ∙ 

du

dx
 = f(u) ∙ 2x = f(x2) ∙ 2x. 

   

 

 

Once someone wrote the equation A(x) = ∫ f(t)dt
x

a
, there was really nothing to stop someone 

else, or perhaps the same person, from writing the equation A(x) = ∫ f(t)dt
x2

a
.  That’s nice, but it 

may be a bit hard to visualize what this means.   

 

To get a better idea of what is going on we can look at a simple example:  A(x) = ∫ 5 dt
x2

0
. 

If x = 3 here, and f(t) is 5, then A(x) represents the area under f(t) from 0 to 9, which is 45.  

When x is 4, A(x) = 16 ∙ 5 = 80.  In general, A(x) = F(x2) – F(0).  Since F here is 5t, this “area so far” 

function is given by A(x) = 5x2 – 0.  While f is a linear function, the Area function is quadratic. 

If you were to ask, “How fast is A(x) increasing as x2 increases?” the answer would still be 5.  

That is, the derivative of A(x) with respect to x2 is 5.  In this simple example the rate of change 

of the area is constant at every point x2, which allows us to see exactly what is happening.  If x2 

is 9 the area is 45, and if x2 is 10 the area is 50.  The area is increasing by 5 units for every unit 

increase in x2.   

But, as you might guess by now, mathematicians will ask for the derivative of A with respect to 

x, which is asking:  how fast is A(x) increasing per unit increase in x?  As you can see, when x 

increases by one unit from 3 to 4, A increases by 35.  When x increases from 4 to 5, we get  

A(4) = 80 and A(5) = 125, which is an increase of 45.  This tells us that the rate of change with 
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respect to x is not constant; in fact it is increasing.  That is not surprising as A(x) is a quadratic 

function.  Because we have chosen a simple function for f(x), we can easily find ∫ f(t)dt
x2

0
 and 

then take the derivative: 

∫ 5 dt
x2

0
 = 5t [x2

0
 = 5x2 – 0 = 5x2.  The derivative of 5x2 is just 10x, so we’re done.  Unfortunately, 

there are many integrals that are not so easy to evaluate.  For example, ∫
1

4−t2  dt
x2

1
 is a bit hard 

to evaluate because it is not immediately obvious what the antiderivative is.  In a case like this, 

if you only need the derivative why bother finding the antiderivative at all?   

To illustrate how to get the derivative of the area function without finding the antiderivative, 

we will use the function A(x) = ∫ √t dt
x2

0
.  We know how to get the derivative of A(x) = ∫ f(t)dt

x

0
, 

which is f(x).  To make our function look like that, we substitute u for x2, to get A(u) = ∫ √t dt
u

0
.  .  

Notice how the area function is now called A(u), but the picture is still the same: 

 

 
 

By looking at the picture, we can see that a very small change in the area, dA, is now f(u)du.    

We already know that u = x2, and du = 2x dx, so the answer is actually visible in the picture.  f(u) 

will be √x2, which is |x|, so the area of the blue strip is |x| ∙ 2x dx.  That makes the derivative 

equal to |x| ∙ 2x. 

dA = f(u)du 

dA = f(x2) ∙ 2x dx 

dA = √x2 ∙ 2x dx 
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dA

dx
 = |x| ∙ 2x  

It’s a bit of a pain to draw a picture each time, so you may prefer to use the chain rule: 

A(u) = ∫ √t dt
u

0
 

dA

dx
 = 

dA

du
 ∙ 

du

dx
 

dA

dx
 = √u ∙ 2x 

dA

dx
 = √x2 ∙ 2x 

dA

dx
 = |x| ∙ 2x  

This example highlights the difference between the variables t and x.  While t cannot be 

negative, x actually can be.  The absolute value sign in the derivative ensures that you will get a 

negative derivative when you select a negative value for x.  That makes sense because as x 

increases from say -5 to -4, the value of the integral decreases from ∫ √t dt
25

0
 to ∫ √t dt

16

0
. 

Again, note that the derivative will be the same regardless of the lower bound of the integral.  

We would get the same answer for A(x) = ∫ √t dt
x2

3
.  That lower bound is a constant so it 

doesn’t change. 
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Integrating x-1 

 

 

          ∫
1

x
 dx = ln |x| + C 

 

 

When we looked at the derivative of the function y = ln x, we saw that the derivative seems to 

have two parts, while the original function has only positive x-values since negative numbers 

don’t have logarithms. 

 

 

 

To correct for the missing part, we used y = ln|x| and its derivative y = 
1

x
: 
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We saw that y = ln |x| does in fact have the derivative y’ = 
1

x
.  That means that when you need 

the antiderivative of x-1, you should use ln |x| rather than just ln x. 

∫
1

x
 dx = ln |x| + C 

 

 

U-Substitution inside the Integral 
 

 

  Substitute one part of an integral by u, so that the other part is similar to du. 

  Be careful with definite integrals, because the limits of integration will change too! 

 

 

 

The idea of finding an antiderivative is simple, but in practice it can be quite difficult.  We have 

already seen that u-substitution is helpful in many situations, and this is no exception.  Let’s do 
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a really simple example to see how it works.  Consider the integral ∫ cos (13x)  dx.  To solve 

this integral we must find the antiderivative of cos (13x), which you may or may not 

immediately be able to come up with.  However, you already know the antiderivative of cos x, 

which is sin x + C.  It may be a good idea to replace 13x with u.   

If u = 13x, then 
du

dx
 = 13, so du = 13dx, and dx = 

1

13
 du.   

Making the appropriate replacements turns ∫ cos(13x)  dx into ∫
1

13
cos u  du.  This is equal to 

1

13
 ∫ cos u  du, and it solves to 

1

13
 sin u + C.  Now replace u with 13x to get 

1

13
 sin (13x) + C.   

As we said before, to find the integral we take the antiderivative.  If we found the correct 

antiderivative, then the derivative of 
1

13
 sin (13x) + C should be cos (13x), and it is.  

Next, let’s try solving an integral involving a product:  ∫ 2x ex2
dx.  As you know, the derivative 

of ex is ex.  The confusing part here is x2, so let’s get rid of that with a u-substitution: 

u = x2 

du

dx
 = 2x, so du = 2x dx 

du can replace 2x dx.  We can rewrite the integral as ∫ eu du, which is just eu + C.  The answer is 

ex2
 + C, which in fact has the required derivative  ex2

∙ 2x, by the chain rule. 

Alternatively, you can substitute for ex2
: 

u = ex2
 

du = 2x ex2
 dx 

Oddly enough, now we don’t need u in the new integral at all; we can just write it as ∫ du. 

∫ du = u + C = ex2
 + C 

 

Example 

Solve ∫ sec2(sin(3x)) cos(3x) dx 

Although this looks really complicated, the problem was designed to involve derivatives so we 

can use a u-substitution.  First, we want to substitute for 3x: 
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u = 3x 

du = 3dx 
1

3
du = dx 

1

3
∫ sec2(sin(u)) cos(u) du  

There, that already looks less complicated.  Next, we can substitute for sin(u), because the 

derivative of that is already in the integral.  Since u has already been used, we have to turn to 

the next letter, v: 

v = sin(u) 

dv = cos(u)du 

1

3
∫ sec2(v)dv  

1

3
 tan v + C 

Once I get to this stage I’m sometimes so pleased with myself that I forget to finish the 

problem.  Since v is not part of the original question you have to get rid of it: 

1

3
 tan(sin(u)) + C 

And u as well: 

1

3
 tan(sin(3x)) + C 

Don’t forget to check your work when you are done!  Take the derivative of your answer to see 

that you get the same expression that you were integrating. 

 

After doing many similar problems, people tend to see a pattern.  There is an unfortunate 

tendency to express such patterns as complex-looking abstract expressions.  The problem we 

just did follows a pattern, so we could make it look like this: 

 

Example 

Solve ∫ f′(g(3x)) g′(3x)dx 
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My first thought here is “Huh, what?”, but if you look closely you can see what this expression 

means.  3x is still there, so you can substitute for it.  You can also see that the second part, 

g’(3x), must be the derivative of something else we can substitute for, g(3x).   

In fact, we can even use a single substitution to be more efficient: 

u = g(3x) 

du = g’(3x) ∙ 3 dx 
1

3
 du = g’(3x)dx 

1

3
∫ f ′(u)du  

1

3
 f(u) + C 

1

3
 f(g(3x)) + C 

Notice that you can still take the derivative to check your work: 

1

3
 f’(g(3x)) ∙ g’(3x) ∙ 3 = f’(g(3x))(g’(3x)) 

 

Example 

Solve ∫
lnx

2x

2

1
 dx 

Let u = ln x.  Then 
du

dx
 = 

1

x
, and du = 

1

x
 dx.  What we really want to substitute for is 

1

2x
 dx, so use 

du

2
 = 

1

2x
 dx.  Now the integral looks like this: 

∫
1

2

2

1
 u du 

Oops, now that we are using u to integrate, the limits of integration are no longer correct!  

Previously, the integral was expressing the area under y = 
lnx

2x
 from x = 1 to x = 2.  Now we are 

integrating with respect to u, and u = ln x.  When x = 1, u = ln 1, and when x = 2, u = ln2.  

Integrate from ln 1 to ln 2, like this: 

1

2
∫ u

ln 2

ln 1
 du 

That solves as 
1

4
 u2 [

ln 2
ln 1

 = 
1

4
 (ln 2)2 – 

1

4
 (ln 1)2 = 

1

4
 (ln 2)2 – 0 ≈ 0.12. 
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It is really easy to forget to change the limits of integration.  Because I have done that many 

times, I prefer to solve the indefinite integral instead, and then evaluate it: 

∫
lnx

2x
 dx = 

1

2
 ∫ u du = 

1

4
 u2 + C = 

1

4
 (ln x)2 + C    [Be careful, it is also easy to forget to put x back in!] 

The constant C just cancels out when you evaluate the integral:   

( 
1

4
 (ln x)2 + C) [

2
1

 =  
1

4
 (ln 2)2 + C – (

1

4
 (ln 1)2 + C) = 

1

4
 (ln 2)2 + C – 0 – C ≈ 0.12. 

 

Most u-substitution problems can be solved with some trial and error, provided you know that 

this is the technique you are expected to use.  Once you learn more integration techniques 

things can get a bit harder. 

 

SOME EXAMPLES OF INTEGRALS THAT CAN BE SOLVED BY U-SUBSTITUTION 

1.  ∫
lnx

x
 dx 

2.  ∫
1

x√1− ln2x
 dx 

3.  ∫
x

√1−2x2
 dx 

4.  ∫ x5√1 + x2 dx 

5.  ∫
cos x

(1 + sin2x)
 dx 

6.  ∫
e

1
x

x2
 dx 

7.  ∫(1 +  √x)
6
 dx 

8.  ∫
x2

9 + x6
 dx 

 

Solutions 

1.  u = ln x, du = 
1

x
 dx.  →  ∫ u du → 

1

2
 u2 + C  →  

1

2
 (ln x)2 + C 
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2.  u = ln x, du = 1/x dx.  →  ∫
1

√1− u2
 du → sin-1u + C  →  sin-1(ln x) + C  (see “Inverse 

Trigonometric Functions”) 

3.  u = 1 – 2x2, du = – 4 dx, dx = – 
1

4
 du.  →  ∫

−
1

4

√u
  du →  – 

1

4
 ∫

1

√u
 du  → – 

1

4
 ∫ u−1/2 du  →  

– 
1

2
 u1/2

 + C  →  – 
1

2
 (1 – 2x2)1/2 + C 

4.  u = 1 + x2, du = 2x dx, x dx = 
1

2
 du, x4 = (u – 1)2.  →  

1

2
∫(u − 1)2u1/2 du → 

 
1

2
∫(u5/2 − 2u3/2 + u1/2)du  → 

1

7
 (1 + x2)7/2 –  

2

5
(1 + x2)5/2 + 

1

3
(1 + x2)3/2 + C 

5.  u = sin x, du = cos x dx → ∫
1

1+u2
 du = tan-1 u + C → tan-1 (sin x) + C 

6.  u = 1/x = x-1, du = -x-2 dx, - du = 
1

x2
 dx  →  –∫ eu du →  – eu + C  → – e1/x + C   

7.  u = 1 +  √x, du = 
1

2
 x-1/2dx, du = 

1

2√x
 dx.  Express this in terms of u, which is possible because 

√x = u – 1:  du = 
1

2(u−1)
 dx.  Now dx = 2(u – 1)du  →  2∫ u6(u – 1)du → 2∫(u7 – u6)du →  

1

4
 (1 +

 √x)8 –  
2

7
 (1 +  √x)7 + C 

8. ∫
x2

9(1 + 
x

9

6
)
 dx  →  

1

9
∫

x2

1 + (
x3

3
)

2 dx.  u = 
x3

3
, du = x2  → 

1

9
 tan-1(

x3

3
) + C 

 

 

 

Tricks for Solving Integrals 
 

1.  Awkward Fractions.  Suppose that we are trying to solve an integral like ∫
x

x + a
 dx, where a 

is some constant. The first thing you may think of is to do a u-substitution with u = x + a, and du 

= dx.  But what about the x on the top?  Well, it is actually easy to get rid of x by expressing it in 

terms of u:  x = u – a. 

∫
u−a

u
 du = ∫ (

u

u
− 

a

u
) du = ∫ (1 −  

a

u
) du = u + ln |u| + C. 



161 
 

Since u = x + a, we get x + a – a ln|x + a| + C.  Remember that a is just some constant.  Rewrite 

the expression as x – a ln|x + a| + a + C, and combine a and C into a single constant.  The final 

solution is x – a ln|x + a| + C. 

Another option is to change the fraction using long division.  x ÷ (x + a) works out to  

1 – 
a

x + a
, which is easy to integrate: 

              1                .   

x + a │  x 

         – (x  + a) 

                  – a                                  The result is 1 with a remainder of – a, so we get 1 + 
−a

x + a
: 

∫ (1 −  
a

x + a
)dx.   This integral is much easier to handle than the original, solving to produce  

x – a ln|x + a| + C as before. 

2.  Division.  If you have a polynomial fraction with greatest power on top larger than on the 

bottom: 

∫
x2+3x−7

x−2
 dx:  Do long division to get ∫ (x + 5 + 

3

x−2
) dx. 

 

3.  Square Roots.  It is possible to get rid of a square root by making a u-substitution for it and 

then squaring u.  For example, while the integral ∫ x √x + 1 dx could be solved by a u-

substitution for x + 1, we can also substitute u = √x + 1.  Now square u to get u2 = x + 1, so that 

x = u2 – 1.  Just be a bit careful when you differentiate u2 = x + 1, because you have to use 

implicit differentiation with respect to x:  2udu = dx.  Then rewrite the integral as ∫(u2 − 1) ∙ u ∙ 

2udu.  Then you can just simplify and solve.  2∫(u4 − u2)du = 
2

5
u5 – 

2

3
u3 + C. 

Don’t forget that it is u2 that is equal to x + 1 rather than u.  Rewrite the expression as 

2

5
(u2)

5

2 – 
2

3
(u2)

3

2 + C = 
2

5
(x + 1)

5

2 – 
2

3
(x + 1)

3

2 + C.  If it makes your teacher happy you could 

factor out (x + 1) and maybe create a common denominator for those fractions. 

4.  Integrals of Exponential Functions.  Because we know that the derivative of ex is just ex, we 

can say that ∫ ex dx = ex + C.  To find ∫ e5x dx, just consider that the derivative of e5x would be 

5e5x.  We need to divide by 5 to get the integral:  ∫ e5x dx = 
1

5
 e5x + C.  Now things work out if 

you take the derivative. 

So how about ∫ 4x dx?  To get a handle on this exponential function we have to rewrite it using 

e as the base.  4 = eln 4, so the integral becomes ∫(eln 4)
x
 = ∫ eln 4 ∙ x dx.  The logarithm makes 
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that look a bit scary, but it is really no different than ∫ e5x dx.  ∫ ex ln 4 dx = 
1

ln 4
 ex ln 4 + C, which 

you can then change back to 
1

ln 4
 4x + C. 

5.  Factor.  Whenever you are stuck, ask yourself: “Can it be factored?”  For example, 

∫ √
4x2+4x+1

4x
 dx = ∫ √

(2x+1)2

4x
 dx = ∫

2x+1

2√x
 dx = ∫ (x1/2 +

1

2
x−1/2) dx 

6.  Complete the Square.  x2 – 10x + 26 = x2 – 10x + 25 – 25 + 26 = (x – 5)2 + 1.  Sometimes this 

will allow you to simplify an expression and then integrate it. 

 

7.  Multiply to take advantage of the difference of two squares.  For example,  

∫ √1 + sin x dx can be solved by multiplying by 
√1−sin x

√1−sin x
.  This gives ∫

√1− sin2 x

√1−sin x
 dx = ∫

√cos2 x

√1−sin x
 dx 

= ∫
cos x

√1−sin x
 dx, which allows you to substitute u = 1 – sin x.  Caution:  √cos2x is only equal to cos 

x for positive values of the cosine.  y = 
cos x

√1−sin x
 is not the same function as y = √1 + sin x.  It 

does not exist at 
π

2
, and it becomes negative right after that.  If you need ∫ √1 + sin x

π

0
 dx, use 

∫ |
cos x

√1−sin x
|

π

0
dx. 

 

 

Trigonometric Integrals 
 

 

∫ sin x dx = - cos x + C                    ∫ cos x dx = sin x + C 

∫ sec2 x = tan x + C                         ∫ −csc2 x dx = cot x + C 

∫ sec x tan x dx = sec x + C            ∫ − csc x cot x dx = csc x + C 

 

Function  Derivative 

f(x) = sin-1x  
1

√1− x2
            →  ∫

1

√1− x2
 dx = sin-1x + C 

f(x) = cos-1x  
−1

√1− x2
            →  ∫

−1

√1− x2
 dx = cos-1x + C 

f(x) = tan-1x    
1

1 + x2            →  ∫
1

1 + x2 dx = tan-1x + C 
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∫ tan x dx = ln |sec x| + C                            ∫ cot x dx = ln |sin x| + C 

∫ sec x dx = ln |sec x + tan x|+ C                ∫ csc x dx = ln |csc x − cot x|+ C 

 

If you need the integral of the square of the sine or cosine function, use the double angle 

formulas:   sin2x = 
1−cos(2x)

2
  and cos2x = 

1+cos(2x)

2
. 

 

 

Attempts to climb Mount Everest have resulted in many deaths and serious injuries, but people 

just have to get try to get to the top “because it’s there.”  Trigonometric functions are there 

too, so people feel compelled to integrate them, as well as every single one of their various 

combinations and variations.  Fortunately, you already know a few: 

∫ sin x dx = - cos x + C 

∫ cos x dx = sin x + C 

∫ sec2 x = tan x + C 

∫ −csc2 x dx = cot x + C 

∫ sec x tan x dx = sec x + C 

∫ − csc x cot x dx = csc x + C 

 

∫ tan x dx = ∫
sin x

cos x
 dx = ? 

To find the integral of the tangent function, we can use a u-substitution.  Let u = cos x, so du =  

-sin x dx.  The integral becomes ∫
1

cos x
 sin x dx =  -∫

1

u
 du, which solves as - ln |u| + C.  Put the 

cosine back where it was:   - ln |cos x| + C.  Now you can use a clever trick, based on the fact 

that ln 1 is zero, and that ln a – ln b = ln 
a

b
:   

- ln |cos x| = 0 – ln |cos x| = ln 1 – ln |cos x| = ln |
1

cos x
| = ln |sec x|.   

∫ tan x dx = ∫
sin x

cos x
 dx = ln |sec x| + C 
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Practice 

Show how to find the integral of the cotangent: 

∫ cot x dx = ln |sin x| + C 

 

∫ sec x dx = ? 

We can only speculate what injuries may have resulted from attempts to solve this integral, but 

eventually someone was successful.  It is not exactly obvious, but if we multiply by 
sec x+tan x

sec x+tan x
 

we can use u-substitution.  The integral turns into ∫
sec2 x+sec x tan x

sec x+tan x
 dx, and now you can use u 

= sec x + tan x.  Then du = (sec x tan x + sec2x) dx.  The new integral ∫
1

u
 du solves as ln |u| + C = 

ln |sec x + tan x|+ C.  If you try this same type of trick for the integral of the cosecant, you will 

find that it is most convenient to multiply by a factor of 
csc x−cot x

csc x−cot x
.  Substitute u = csc x – cot x 

to solve the integral.  So, 

∫ sec x dx = ln |sec x + tan x|+ C 

∫ csc x dx = ln |csc x − cot x|+ C

 

 

If you need the integral of the square of the sine or cosine function, use the double angle 

formulas:  sin2x = 
1−cos  (2x)

2
  and cos2x = 

1+cos  (2x)

2
. 

∫ sin2x dx = ∫
1−cos  (2x)

2
 dx = ∫

1

2
 dx – ∫

cos  (2x)

2
 dx = 

1

2
 x – 

1

4
 sin(2x) + C 

Since sin (2x) = 2 sin x cos x, this solution can also be written as 
1

2
 x – 

1

2
 sin x cos x + C 

∫ cos2x dx = ∫
1+cos  (2x)

2
 dx = ∫

1

2
 dx + ∫

cos  (2x)

2
 dx = 

1

2
x + 

1

4
 sin(2x) + C 

This same strategy works for ∫ sin4x dx, since you can write that as ∫(sin2x)2 dx.   Then you 

can change that to ∫ (
1−cos  (2x)

2
)

2
 dx, which is ∫

1−2 cos  (2x)+cos2(2x)

4
 dx.  That contains 

another square, so rinse and repeat: 
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∫
1

4
 dx – ∫

2 cos(2x)

4
 dx + ∫

cos2(2x)

4
 dx = 

1

4
 x + 

1

2
∫ cos(2x)dx + 

1

4
 ∫

1+cos  (4x)

2
 dx 

That works out to 
1

4
 x – 

1

4
 sin (2x) + 

1

8
 x + 

1

32
 sin (4x) + C, = 

3

8
 x – 

1

4
 sin (2x) + 

1

32
 sin (4x) + C. 

 

Practice 

Show that ∫ cos4x dx = 
3

8
 x + 

1

4
 sin (2x) + 

1

32
 sin (4x) + C. 

 

Now let’s look at integrals containing both sine and cosine.  For something like ∫ sin3 x cos x dx, 

you can just use a u-substitution.  If u = sin x, then du = cos x dx.  Solve ∫ u3 du, and you’ll end 

up with 
1

4
 sin x + C.  Unfortunately that won’t work so well for ∫ sin3 x cos2 x dx.  Write this 

integral as ∫ sin2 x cos2x sin x dx so you can use the identity sin2x + cos2x = 1.  Since sin2x =  

1 – cos2 the integral turns into  ∫(1 − cos2 x) cos2x sin x dx.  That is the same as 

∫(cos2x − cos4 x)  sin x dx.  Split it into two integrals:  ∫ cos2x  sin x dx - ∫ cos4x  sin x dx .  

Here a u-substitution works well, with u = cos x and du = -sin x.  The final result is 

 
1

5
 cos5x –  

1

3
 cos3x + C. 

When you check your answer here, you may be surprised that the derivative of this expression 

is -cos4x sin x + cos2x sin x, rather than sin3x cos2x as you were expecting.  You have to rearrange 

things a bit:  -cos4x sin x + cos2x sin x = cos2x sin x(1 – cos2x) = cos2x sin x(sin2x) = sin3x cos2x. 

 

The same tricks we just used will also work for the tangent and the secant, which are related by 

the identity tan2x + 1 = sec2x. 

There are many, many other trigonometric integrals.  Wikipedia has a long list of them, neatly 

organized by type. 
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The Average Value of a Function 
 

  The average value of a function on the interval from a to b is  
∫ f(x) dx

b

a

b−a
 

 

 

Calculus can be used to determine the average value of a function over a certain interval.  To 

help us make sense of what this means, we will use speed as an example.  If you look at the 

illustration below, you will see that the speed of some object is increasing from 0 miles per 

second to 5 miles per second over a period of 4 seconds.   
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What is the average speed of this object for this time interval?  We don’t need calculus here, 

because there is a nice steady increase in the speed.  At the beginning of the interval the speed 

was 0, and at the end the speed is 5 miles per second.  The average speed was 2.5 miles per 

second.  Notice that at a steady speed of 2.5 miles per second for 4 seconds the object would 

travel a total distance of 10 miles.  Distance is equal to speed multiplied by time.  The distance 

traveled is also equal to the area underneath the speed curve.  The area under this speed curve 

is exactly equal to 10.  So if we know that the distance traveled is 10 miles, over a period of 4 

seconds, we can figure out that the average speed has to be 2.5.  The illustration below shows 

that the distance traveled would be the same if the object proceeded at a speed of 2.5 miles 

per second during the entire interval: 

 

Average speed = Total distance traveled ÷ time. 

 

 

Now look at this picture: 
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Hmm, how can we find the average speed now?  Well, things still work the same way.   

Average speed = Total distance traveled ÷ time.   

The total distance traveled is the area under the curve, which we can find by taking the integral.   

Chop up the time into infinitely many infinitely tiny intervals dt.  Each interval is so small that 

the speed really doesn’t change from the start of the interval to the end, so we can use the 

height of the function at some point during that time.  For one little interval, the distance 

traveled is f(t) ∙ dt.  Now add up all those little distances:  ∫ f(t)dt
4

0
 is the total distance traveled 

between 0 and 4 seconds, and in this case that is  ∫ 3√t dt
4

0
. 
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∫ 3√t dt
4

0
 = 3 ∫ t

1

2
4

0
 dt = 3 ∙ 

2

3
 t

3

2 [4
0

 = 2 t
3

2 [4
0

 = 2√4
3
- 0 = 2 ∙ 8 = 16. 

The average speed is distance ÷ time, which is 
16

4
 = 4.  The picture below shows that the 

distance traveled would also be 16 if the speed had been 4 the entire time: 

 

 

This method of finding the average speed works for any kind of function.   

We can find the average value of the function on some given interval by taking the area under 

the curve and dividing it by the length of the interval. 
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The Area between Two Curves 
 

 

  The area between two curves is ∫(f(x) − g(x))dx, if f(x) ≥ g(x) 

 
  To find the limits of integration, set f(x) equal to g(x) to get the intersect points. 
 

 

 

Most students find this subject rather intuitive.  Just like we did before, we can find the area 

between the graphs of two functions by dividing it up into infinitely many infinitely thin strips.  

Each strip has a width of dx, and we can find the height of a sample strip by taking the y-value 

of the top curve and subtracting the y-value of the bottom curve.  If f(x) has a larger value that 

g(x), the infinitely tiny area dA of each strip is (f(x) – g(x))dx.  The total area A is ∫ dA, which is 

equal to ∫(f(x) − g(x))dx.  That is really no different from finding the area between f(x) and 

the x-axis (y = 0), which is given by the integral ∫(f(x) − 0)dx. 

Consider the area between y = x and y = x2.  If no limits are given for the integral, you must find 

the intersect points of the two curves.  To do that, just set them equal to each other and solve 

as you learned to do in algebra.  x = x2, so x – x2 = 0 which says that x(x – 1) = 0.  The two 

intersect points are x = 0 and x = 1.  Draw the graphs of the two functions to see that over this 

interval y = x has larger values than y = x2.  The area between the two graphs is given by the 

integral ∫ (x −  x2)dx
1

0
. 

If you make a mistake and use the function with the larger y-value as the second function g(x) in 

the integral ∫(f(x) − g(x))dx, you will obtain a negative area, which should then tell you that 

you did it the wrong way around.  However, this is not a substitute for drawing a picture of the 

situation. 

 

Example 1 

Find the area between the graphs of the functions y = sin (x) + 2 and y = 2, between the y-

axis and the line x = 2π. 

If you fail to draw a picture in this case, you might try to find the integral  

∫ (sin(x) + 2 − 2)
2π

0
 dx, which will give you an area of zero.  The graph of these functions 
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shows that you need to take the integral in two parts: 

 

 
 

From 0 to π, y = sin(x) + 2 is the top function.  The thin blue line represents one of the infinitely 

tiny pieces that we are integrating.  The height of this line is (sin (x) + 2) – 2, and its width is dx.  

The integral is ∫ (sin(x) + 2) − 2
π

0
 dx = ∫ sin(x)

π

0
 dx = – cos x [

π
0

 = – – 1 – – 1 = 2.  

From π to 2π, y = 2 is the top function.  The integral is ∫ 2 − (sin(x) + 2)
2π

𝜋
 dx.  That simplifies 

to ∫ −sin(x)
2π

π
, which is cos x [

2π
π

 = 1 – –1 = 2. 

The total area between the graphs is 4 square units. 

 

 

You may encounter problems where the graphs are described with x as a function of y, such as 

x = y2.   Again, it is important to draw a picture.  If you are used to using your graphing 

calculator, you may wonder what to do in this situation.  You actually have two options here.  

The TI-84 graphing calculator can draw the inverse of the function y = x2 for you, so that you 

then have a picture of x = y2.  To do this, enter the function y = x2 into the first available 

function slot, Y1.  You don’t actually want to see this function, so we need to keep it from 

showing in the final plot.  Select the small slanted line just in front of the Y, and press enter until 

the line changes to a little open circle.  Now you can leave this screen (by pressing 2ND MODE).  

Next, use the DRAW function, found above the PRGM button.  Option 8 in the DRAW menu is 

DrawInv.  To enter Y1, you need to press the VARS key and select Y-VARS.  Then select Function, 

and you will be able to choose Y1 from the list that appears.  Once you have done this, your 

calculator will display DrawInv Y1, but it will not actually draw the graph until you press ENTER. 
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If you can’t remember the proper calculator commands and you really need to see a graph of  

x as a function of y, you can also use my revolutionary new non-patented Axis Inverter.  Its 

unique mechanical design works with any model graphing calculator.  A $0.01 value, it is 

available at absolutely no charge to readers of this e-book.  Act now, and you’ll also get the fun 

of cutting it out and gluing the front and back parts together in the orientation shown. 

 

 

 

 

 

The Axis Inverter reflects the x and y axes over the line y = x, providing the proper orientation 

for the graph of the inverse function without having to reflect the graph itself.  It fits on top of 

the axes in your calculator window, so that you can just enter y = x2 and it will display as x = y2.  

Note that after entering the functions you integrate using dy rather than dx, because the width 

of the infinitely tiny strips you are using will lie along the y-axis. 

 

 

Example 2 

Find the area between x = y2 and x = - y2 + 8.   

 

Just draw these functions as y = x2 and y = - x2 + 8.  In the image below, I have used the axis 
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inverter to show the inverse functions we need.  The on-indicator is on, and it is reminding me 

to use dy instead of dx: 

 

 
 

The top function is x = - y2 + 8, and the bottom function is x = y2.  Set the two functions equal to 

each other to see where they intersect: 

- y2 + 8 = y2 

8 = 2y2 

4 = y2 

y = ±√4 

The curves intersect at y = -2 and y = 2.  We will divide the area between these y-values up into 

infinitely many infinitely small strips with a width of dy.  The height of each strip is the top x-

value, - y2 + 8, minus the bottom x-value, y2.  dA = (- y2 + 8 – y2) dy.  Now integrate: 

∫ dA = ∫ (−2y2 + 8) dy
2

−2
 

A = - 
2

3
 y3 + 8y[

2
−2

 = – 
2

3
 ∙ 23 + 8 ∙ 2 – (– 

2

3
 ∙ (– 2)3 + 8 (–2)) = 21

1

3
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Interestingly, we can also use integrals to find the area between two circles with the same 

center.  Suppose the outer circle has a radius of 5 cm, and the inner circle has a radius of 3 cm.  

It is easy to find the area between these circles without using calculus:  25π - 9π = 16π.  To use 

calculus, we should look back at the topic “how a circle grows”.  If you think about how the area 

increases, you can see that dA = 2πr dr.  If we want the area from r = 3 to r = 5, we can take the 

integral:  A =  ∫ 2πr
5

3
 dr = πr2 [

5
3

 = 16π. 

This kind of thing becomes more important when there is an additional dimension to the 

problem.   

 

Example 2 

 
                                                                                                                                                                            Photo:  Tim Vickers 

The population density of water striders on the surface of a circular pond is modeled by 

the equation d = 0.015r2 (density in insects per square yard of surface area, r = 0 at the 

center of the pond).  The radius of the pond is 25 yards.  Find the approximate number of 

water striders along the outer edge of the pond, within 2 yards of the shore. 

 

Here the number of bugs per square yard depends on the distance from the center of the circle.  

If you consider a really thin ring 2 yards from the shore, the density of the bugs is approximately 

the same everywhere along that ring.  We can divide the entire surface area of the pond up into 
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infinitely thin rings, and multiply the area of each ring by the density of insects at that particular 

point.  For a sample ring the area is 2πr dr, just as we saw earlier.  The number of insects in this 

area is given by 2πr dr ∙ 0.015r2.  Now add up all the areas from r = 23 to r = 25: 

∫ (2πr
25

23
)(.015r2) dr = ∫ 0.03πr325

23
 dr = 0.03π∫ r325

23
 dr. 

That works out to 0.03π ( 
1

4
 r4[

25
23

 ) ≈ 2610 water striders. 

Oddly enough, this works even though it doesn’t actually make any sense to consider the 

density of insects in an infinitely thin ring. 

 

 

Practice 

Use calculus to find the area between f(x) = |x − 4| + 2 and the line y = 6.  Check your answer 

using geometry. 

 

Using Integrals to Find Volume 
 

1.  Slices 

 

 
  Round slices:  V = ∫ πr2 dh   
 
  Square slices:  V = ∫ s2 dh 
   

 

The idea behind using integrals to find the volume of something is actually rather simple.  Just 

grab an imaginary cereal box and use calculus to determine its volume.  We will cut the box into 

an infinite number of infinitely thin slices, and then add up the volume of all those little slices to 

find the volume of the box.   A single infinitely thin slice represents dV, an infinitely small 

change in the volume V.  The total volume is the sum of all of the infinitely thin slices that we 

cut the box up into:  V = ∫ dV.   

Our imaginary cereal box has the convenient dimensions of 2 inches for the width, 8 inches for 

the length, and 12 inches for the height.  We could slice the box up in any one of three different 
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directions, but let’s just make our slices from top to bottom.  That means that each slice will 

have a surface area of 2 times 8 or 16 square inches.  That surface is actually a very thin 

rectangle of cardboard with a lot of infinitely thin bits of cereal in the middle.  Most calculus 

problems use x for the variable, but here we will use h for the height of the box.  Each slice has 

an infinitely small thickness that we will indicate by dh.  The volume of one slice, dV, is 16 

square inches times dh inches, or 16dh cubic inches:  dV = 16dh.  Once you have determined 

this, you have already solved your problem.  Notice that 
dV

dh
 = 16, that is, the derivative of the 

Volume (with respect to the height of the box), is 16.  To get the Volume function, we need the 

antiderivative.  If V = 16h, then 
dV

dh
 would be 16.  In fact, any function that looks like  

V = 16h + some constant C would do the job. 

Now that we know what we are looking for, let’s use some integral notation: 

V is equal to the sum of all the infinitely tiny dV’s that we have divided it into:  V = ∫ dV.  Since 

dV = 16 dh, we take the integral on both sides: 

∫ dV = ∫ 16dh 

V = ∫ 16dh 

V = 16h + C 

Now all we have to do is find the volume when h is 12 inches; that is, we want the volume from 

h = 0 to h= 12: 

V(12) = ∫ 16dh
12

0
  

That works out to 16h [
12
0

 (the Volume function evaluated at 12 minus the Volume function 

evaluated at 0), which is 16 · 12 – 16 · 0 = 192 cubic inches.  This is the same volume you would 

get if you multiply the length times the width times the height of the box, but then you don’t 

get the fun of cutting up a box filled with cereal into infinitely many slices. 

 

Example 1 

 

Find the volume of a 10 cm tall cylinder with a radius of 3 cm. 

Although we could put this cylinder into an x-y coordinate system, it is simpler to just slice it up 

from top to bottom using the variable h for the height.  Each infinitely thin slice has a volume of 
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πr2dh, which is the base times the height.  Because the radius is always 3 that would be 9πdh.  

dV = 9πdh.  Now take the integral on both sides: 

∫ dV = ∫ 9π dh 

integrate from h = 0 to h = 10, remembering that π is just a number: 

9π ∫ dh
10

0
 =  9π h [

10
0

 = 90π cm3 

 

Of course calculus books can’t have you do simple problems like this because you might get the 

impression that calculus is easy, or worse, unnecessary.  Let’s tackle a problem that would be 

impossible to solve if you had forgotten the formula for the volume of a cone.  (Where does 

that formula come from anyway?) 

 

Example 2 

Find the volume of the cone that would be generated by taking the line y = x, for 0 ≤ x ≤ 1, 

and rotating it around the y-axis. 

This problem can be solved in the same way as we found the volume of the cereal box.  We 

simply take slices of the cone, from the bottom to the top.  Each slice will have the shape of a 

circle, and be infinitely thin.  Because we are cutting along the y-axis, the thickness of each slice 

will be dy.  The radius for every slice will be x, which would make the area πx2.  Since the 

thickness is dy, the volume of each slice is πx2dy.  Now we add up all of our slices from the 

bottom to the top along the y-axis.  Since we are considering x values between 0 and 1, the top 

of the cone will be at y = 1.  The integral is ∫ πx2 dy
1

0
.  When you end up with an integral like 

this, which no you can’t solve, it is important to realize that you have done nothing wrong.   The 

integral is constructed correctly; it just needs a change of variables.  Since we have a simple 

equation, y = x, we can easily change our integral to ∫ πy2 dy
1

0
. 

π ∫ y2 dy
1

0
 = π 

y3

3
 [1

0
 = 

1

3
 π. 

Compare this answer to what you would get from the formula for the volume of a cone:  1/3 

base times height. 
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2.  Washers 

 

 
  For washers, V = ∫(π(r1)2 − π(r2)2)dh, where r2 is the radius of the hole 
 
  Rearrange to express x in terms of y as needed. 
   

 

 

Example 

Consider the area inside a circle with radius 1 centered at the origin, bounded by the line 

y = x and the x-axis.  Find the volume of the solid generated by rotating this area around 

the y-axis. 

I’m not good at drawing anything, but experience has taught me that it is important to create a 

cross-section picture for these rotation problems so you don’t make mistakes.  I highly 

recommend it.   

 

 

The colored area represents half of the cross-section of the shape described.  We will solve this 

problem by slicing up the shape from the bottom to the top, just as we did with the cereal box 
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earlier.  Because of the direction in which we take the slices, each slice will have a thickness of 

dy.  The infinitely thin slices will have a hole in the middle due to the slanted line at the top 

(except for the bottom slice).  The slices will be perfectly round, with a perfectly round hole in 

the middle.  Such shapes are called washers.  The surface area of each washer is the total 

surface area of the circle minus the surface area that is missing due to the hole.   

First we need to find the radius of each washer, which is the distance from the y-axis to the 

edge of the circle.   Whenever you are measuring in a horizontal direction, think in terms of x.  

At any given height y, the radius of the corresponding washer is x.  The equation of the circle is 

y2 + x2 = 1, so x = √1 − y2.  The total surface area of the washer without the hole is πr2, which is 

πx2.  Because we are using dy, we need to express everything in terms of y.  For this function  

x2 = 1 – y2, so the surface area is π(1 – y2).  The area of the hole must be subtracted from this.  If 

you look at your picture you will see that the radius of each hole is determined by our second 

function y = x.  At each point y, the radius of the hole is x, which is equal to y.  The area of the 

hole is πy2.  The net area of each washer is π(1 – y2) – πy2.  That rearranges to π – πy2 – πy2, or  

π – 2πy2.  Each washer has a thickness of dy, so the volume of a sample washer is (π – 2πy2)dy. 

We have to find just how tall our shape is so we can add up the washers.  As I vaguely recall my 

days in a trigonometry classroom, I see that since the line y = x runs at a 45 degree angle, the 

height of the shape should be the sine of 45 degrees.   However, if that doesn’t stand out for 

you, you can figure out where the line and the circle intersect: 

x = y     and      x = √1 − y2 

They intersect when y = √1 − y2: 

y2 = 1 – y2 

2y2 = 1 

y2 = 
1

2
 , so the positive value for y is 

1

√2
  which is more properly written as y = 

√2

2
 (just to keep 

math teachers happy). 

Now we integrate from 0 to 
√2

2
: 

∫ (π –  2πy2
√2

2
0

)dy  

∫ π 
√2

2
0

dy  –  2π ∫ y2
√2

2
0

dy  
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This integrates to πy [
√2

2
0

 , minus 2π · 
1

3
 · y3 [

√2

2
0

 : 

π(
√2

2
) – π(0)  – [ 

2

3
π (

√2

2
)3 -  

2

3
π (0)3] 

√2

2
 π –  

2

3
π (

√2∙ √2 ∙ √2

2 ∙2 ∙ 2
) 

√2

2
 π –  

2

3
 ∙  

2 √2

2 ∙2 ∙ 2
 π = 

√2

2
 π -  

 √2

6
 π =  

3√2

6
 π –   

 √2

6
 π = 

2√2

6
 π =   

√2

3
 π.   

The point of having you do exercises like this is to let you show off your new ability to calculate 

the volume of oddly shaped objects.  This of course works only when those objects can be 

described by equations, which is the responsibility of the mathematical modeling people. 

 

 

3.  Cylindrical Shells 

 

 
  Cut an infinitely thin cylindrical shell and lay it flat to see that its volume is 2πr dr. 
 
  Using cylindrical shells, V = ∫ 2πrh dr.  
 
  The integral starts at the center of the object, and goes out to the edge. 
 
  More than one function may determine the height of your shells.  
  

 

Just like we can fill a shape with disks or washers, we can fill the entire volume with infinitely 

thin hollow cylinders.  This method provides a definite advantage at times when it is difficult to 

calculate the maximum height of your object.  If you don’t know the maximum height of an 

object you couldn’t use disks or washers because you wouldn’t know how high to stack them.  

Using cylinders only requires you to know the width of the object.   

If you have difficulty visualizing how to calculate the volume of a thin hollow cylinder, just make 

yourself one out of paper, and then flatten it out again.  The volume is 2πr (the circumference 
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of the cylinder) times the height times the very small thickness dr.  The volume of each shell is 

an infinitely tiny part of the total volume V:   

dV = 2πrh dr 

To find the volume V we integrate: 

∫ dV = ∫ 2πrh dr 

Depending on how you stack your cylinders, dr may be dx or dy.  Once you have decided that 

you will need say, dy, you must express both r (the radius of each cylinder) and h (the height of 

each cylinder) in terms of y so that you have only a single variable in your integral. 

 

Example 1 

 

Using slices, we found that the volume of a cylinder with a radius of 3 cm and a height of 10 cm 

is 90π cm3.   There is another way to find this volume using calculus.  Recall that we can divide a 

circle into infinitely thin rings, and add those rings back up to get the area of a circle.  The 

circular base of the cylinder can be divided up into rings with a thickness of dr, and a 

circumference of 2πr.  The area of each infinitely thin ring is 2πr dr. 

Just a word of caution here:  the radius of the whole circle is 3 cm, but we are using r as a 

variable to indicate the radius of each ring.  Do not insert a value of 3 in place of r in your 

integral. 

Now, instead of just cutting up the base into rings, imagine cutting up the entire cylinder into 

infinitely thin hollow shells.  To determine the volume of each hollow shell, I like to imagine 

cutting it open and laying it flat.  The length of the resulting rectangle is the circumference:  

2πr.  The dimensions of this flattened shell are 2πr ∙ dr ∙ 10 for a volume of 20πr dr.  Add up the 

volume of all the shells from r = 0 to r = 3:  ∫ 20πr dr
3

0
 = 10πr2[

3
0

 = 90π cm3. 

  

Example 2 

 

Consider the area inside a circle with radius 1 centered at the origin, bounded by the line 

y = x and the x-axis.  Find the volume of the solid generated by rotating this area around 

the y-axis. 
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If this problem looks familiar, it is because we solved it before by using washers.  However, the 

volume can also be found by filling it with cylindrical shells.   

The shape in this problem can be filled with cylindrical shells that have their radius along the x-

axis.  The thickness of each shell is dx because we are setting our shells along the x-axis.  Each 

shell has a volume dV, which equals 2πrh dr 

There are actually two parts to this.  From x = 0 to x = √2/2, these shells have a radius of x and 

height y, which is just x here.  From x = √2/2 to x = 1 the radius is still x but the height y is now 

√1 − x2.   

∫ 2πx ∙ x
√2

2
0

dx + ∫ 2πx√1 − x21
√2

2

dx  

The first integral is 
2

3
πx3 [

√2

2

0
 , which is 

2

3
π

√2

23

3

-  
2

3
π(0)3 = 

√2

6
π. 

The second integral needs a u-substitution: 

u = 1 – x2     If x = 
√2

2
  u = 

1

2
, and if x = 1  then u = 0 

du = -2xdx 

∫ −π√u
0

1

2

 du 

2

3
πu

3

2  [
1/2

0
, which is 

2

3
π√(

1

2
)

3

 - 
2

3
π(0)

3

2  = 
2

3
π√

1

8
 = 

2

3
π

1

√8
 = 

2

3
π

1

2√2
 = 

1

3
π

1

√2
 = 

√2

6
π 
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Adding the results of both integrals gives us 
√2

6
π + 

√2

6
π = 

√2

3
 π. 

 

Example 3 

Consider the area bounded by the function y2 = -x + 5, the line x = 3, and the y-axis.  Use 

cylindrical shells to find the volume of the solid generated by rotating this area around 

the x-axis.  Check your answer using slices. 

 

 

When you use shells things can look more confusing.  It helps to set your shells down on a level 

surface, which is this case is the y-axis.  That means each shell will have a thickness of dy.  From 

y = 0 to the first intersect point, all of the shells will have a height of 3.  That intersect point 

occurs when x = 3, so y2 = -3 + 5 or y = √2.   After that the shells get shorter, with a height of x.  

We’re done once the curve intersects the y-axis, which happens when x = 0:  y2 = 0 +5 or y = √5.   

First integrate from y = 0 to y = √2.  The radius of each shell is y and the height is 3, so the 

volume of one shell is 2π√2 ∙ 3 ∙ dy.  6π ∫ ydy
√2

0
 = 3π𝑦2 [√2

0
, which is 6π.  Notice that this is just 

the volume of a cylinder with a radius of √2 and a height of 3. 
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Next, we need to integrate the remaining shells.  They will have a radius of y and a height of x.  

The volume of one of those shells is 2πy x dy.  Add the volumes from √2 to √5: 

2π ∫ yxdy
√5

√2
  

2π ∫ y(5 − 𝑦2)dy
√5

√2
  

2π (∫ 5ydy
√5

√2
−  ∫ y3dy

√5

√2
)  

2π (
5

2
 𝑦2 [√5

√2
−  

1

4
 𝑦4 [√5

√2
) = 2π (

5

2
∙ 5 −  

5

2
∙ 2 − (

1

4
∙ 25 −

1

3
∙ 4) ) = 4.5π 

So, we have a total volume of 6π + 4.5π = 10.5π. 

 

Using slices, we can go along the x-axis.  Each slice will have a radius y and a thickness of dx, so 

the volume of one slice is πy2dx.  Integrate that from x = 0 to x = 3:  π ∫ y23

0
dx.  We can replace 

y2 by -x + 5:  π ∫ (5 − x)
3

0
dx.  That splits nicely:  π(∫ 5

3

0
dx – ∫ x

3

0
dx): 

π( 5x[
3
0

 – 0.5x2[
3
0

 )  

π( 15 – 0.5 ∙ 9) = 10.5 π 

 

Practice 

1.  Use both slices and cylindrical shells to determine the volume of a cylinder with a height of 5 

inches and radius of 2 inches. 

2.  Use calculus to find the volume of the solid generated by rotating the area between  

f(x) = |x − 5| and y = 3 around the x-axis.  Use geometry to check your answer. 



185 
 

 

Filling a Leaking Bucket? 
 

 
  Consider the net rate of change, and the initial condition.   
  

 

 

There are many situations where something is entering a storage container, and simultaneously 

leaving it.  This allows for infinite variations of the leaking bucket problem on exams. 

 

Example 1 

Water is flowing into a 5 gallon bucket at a rate of 30 gallons per hour, and leaking out at 

a rate of 20 gallons per hour.  If the bucket initially contained 3 gallons of water, how long 

will it take to fill? 

This problem is easily solved by just thinking about it, but we will use calculus here to follow 

along with our common sense.  The first thing to do is to create an expression that shows the 

net rate of change.  If water is flowing in at a rate of 30 gallons per hour, and leaking out at a 

rate of 20 gallons per hour, there is a net inflow of 30 – 20 = 10 gallons per hour.  That looks too 

simple, so write it in calculus language as the change in volume:  
dV

dt
 = 30 – 20 = 10. 

Now, how long will it take to fill the bucket?  Well, if 
dV

dt
 = 10, and we know the initial volume of 

water, we can find the actual volume equation by taking an integral.  You already know that if 
dV

dt
 = 10, then V must be equal to 10t + C.  You can write that nicely as shown below: 

dV

dt
 = 10 

dV = 10 dt 

∫ dV = ∫ 10 dt 
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V = 10t + C 

Whenever we know the rate of change, the integral gives this kind of general expression for the 

actual value.  At t = 0, the volume is 3.  This is called an initial condition.  Because you know this 

initial condition, you can determine the value of C, which is 3 in this case. 

The final equation for the volume of water in the bucket is V = 10t + 3 (0 ≤ V ≤ 5), where t is 

measured in hours.  It will take 
1

5
 of an hour, or 12 minutes to fill the 5 gallon bucket with 2 

more gallons, which makes perfect sense when the water is flowing in at a net rate of 10 

gallons per hour.  Actual exam problems will look more complicated, but they are based on this 

simple idea. 

 

Example 2 

A recycling sorting facility that operates 6 days per week can process and ship out 19 tons 

of recyclables per day.  During a typical week, material arrives at the plant at a rate 

modeled by the function a(t) = -t(t – 6)(0.2t2 + 1), where t is in days.  If there are 27 tons of 

unprocessed material at the plant when it opens Monday morning, how much will be left 

to process when the plant closes Saturday evening? 

Here the net rate of change is inflow – outflow or -t(t – 6)(0.2t2 + 1) – 19.  The function that 

gives the actual amount of recyclables at the plant is the integral of that.  Multiply out and take 

the integral:  ∫(−0.2t4 + 1.2t3 − t2 + 6t − 19)dt   =  – 0.04t5 +  0.3t4 – 
1

3
t3 + 3t2 – 19t + C. 

When t is zero, at the start of the week, the value of this function is 27, so C = 27.  At t = 6, the 

amount of material remaining will be 26.76 tons.  Notice that we can get this same result by 

taking the definite integral from 0 to 6, which is -0.24, and adding the initial amount, 27.  

Essentially, this is taking the change and adding it up for 6 days to get the total change, and 

then adding what you started with.  The definite integral is better here, because your graphing 

calculator will get it for you!  [Note that although C cancels out when you take a definite 

integral, the initial condition does not actually disappear.  You may need to add it depending on 

what it is you’re trying to calculate.]  

A graphing calculator will also tell you when the amount of recyclables at the plant is at a 

maximum or minimum, because the rate of change will be zero at these points. 
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Separable Differential Equations 
 

 
Separable differential equations can be solved by moving the x and y portions of the equation 
to opposite sides, and then integrating.  If there are two terms on one side, combine them into 
a single term if possible. 
 
Note that e(x + c) = ex ∙ ec = Cex 

 

 

If you look back at the Implicit Differentiation section, you will see that we differentiated  

y2 + x2 = 100 and got 
dy

dx
 = - 

x

y
.  The original function y appears in this differential equation.  A 

differential equation is an equation that contains differentials, which are things like dy and dx. 

Mathematicians define a differential equation as an equation that shows a relationship 

between an unknown function and one or more of its derivatives.  Implied in this definition is 

that the object of the game is to find the unknown function.  So, if you start with 
dy

dx
 = - 

x

y
, is it 

possible to work backwards and determine that y = ±√100 − x2?  Well, not quite, since some 

information disappeared when we took the derivative.  y2 + x2 = 100 has the same derivative as 

y2 + x2 = 0, or y2 + x2 = 5.  We will have to add a constant back in, just as we do for any indefinite 

integral. 

Before we try to solve 
dy

dx
 = - 

x

y
, let’s do some easier problems. 

 
 
Example 1 

dy

dx
 = 2x 

Hey, I know that!  The solution is y = x2 + C.  If only x appears on the right side of the equation, 
we can solve it easily by taking the integral on both sides.  To do that properly you should 

rewrite  
dy

dx
 = 2x as dy = 2x dx.  Then take the integral on both sides: 

∫ dy = ∫ 2x dx 

y + C1 = x2 + C2 
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Combine the two constants into a single constant to get y = x2 + C. 

 

Example 2 

dy

dx
 = y 

Now all we have to do is find a function y that has a derivative equal to itself.  A good candidate 
for this is y = ex, for which the derivative is ex.  Notice that we cannot choose y = ex + 5, because 
then the derivative, ex, is no longer equal to y. 

Let’s do this nicely so we can see if there are any other possibilities.  First we should rewrite the 
equation so we can take the integral on both sides: 

dy = y dx 

Oops, I can’t find ∫ y dx because there is more than one variable here.  y needs to move to the 
other side first: 

1

y
 dy = dx 

∫
1

y
 dy = ∫ dx 

ln |y| + C1 = x + C2       

The ln function accepts only positive values, so we need the absolute value sign for y in case it 
happens to be negative. 

Just use a single constant that combines the constant from both integrals:   

ln |y| = x + c 

eln|y|= e(x + c) 

Be careful here, e(x + c) has exponents that are added, which is the result of the multiplication  
ex · ec. 

|y| = ex · ec                      y could be negative, but ex · ec is always positive  

y = ± ex · ec                  
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Notice that ec is just some constant, so we can call that C.  Once we replace ec by a regular 
constant we no longer need the ± sign, since C can be negative. 

y = Cex  is the solution to the differential equation 
dy

dt
 = y. 

This says that the derivative of y = Cex is Cex, which we really already knew. 
 
 

Example 3 

Now let’s try  
dy

dx
 = - 

x

y
 

Rearrange the equation to ydy = -xdx 

∫ ydy = ∫ −xdx 

1

2
 y2 = - 

1

2
 x2 + C1 

y2 = - x2 + C 

y2 = C – x2
 

y = ± √C −  x2.   This is the general form of our original equation y = ±√100 − x2. 

As you solve various problems, you will use a given initial condition to turn your general 

equation into a specific solution.  For example, if your solution is y = ± √C −  x2, a given initial 
condition of y = 10 when x = 0 will allow you to find that C = 100, and the ± sign can be 
removed: 

y = √100 − x2 
 

 
Example 4 

Find an equation for the volume V, given that 
dV

dt
 = 75 + 

V

10
 and the volume is 50 at t = 0. 
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Well, I can separate dV and dt like this:  dV = 75dt + 
V

10
 dt.  Then I move V to the other side ….  

Hmm, that won’t work out so well.  When I try to divide both sides by V, I get 
75dt

V
 + 

1

10
 dt on 

the right.  I could move 75dt to the left, but that leaves dt on the wrong side .   

The best thing to do in a situation like this is to create a single fraction on the right: 

dV = 
750

10
 dt + 

V

10
 dt 

dV = 
750+ V

10
 dt 

Now I can divide both sides by 750 + V: 

1

750+V
 dV = 

1

10
 dt 

∫
1

750+V
 dV = ∫

1

10
 dt 

ln |750 + V| = 
1

10
 t + c 

750 + V = ± et/10 + c 

V = ± ec et/10 – 750 

V = Cet/10 – 750 

If V = 50 when t = 0, then Ce0/10 must be equal to 800.  Because e0 is just 1, we can say that  

C = 800: 

V(t) = 800et/10 – 750 

 

Make sure to check your work: 

dV

dt
 = 75 + 

V

10
 = 75 + 

800e
𝑡

10 − 750

10
 = 80et/10 
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Slope Fields 
 

 

A slope field is a visual representation of a differential equation f(x,y).  The slopes of the line 
segments show the value of the derivative of the original function F for selected values of  
x and y. 

Sketch the graph of F by starting at the point given by the initial condition, and follow the rate 
of increase or decrease shown by the slope of the lines. 

 

 

Even if you can’t solve a differential equation, you can create a slope field.  This is a confusing- 

looking drawing with a whole bunch of little lines on it.  It is created by solving the differential 

equation for random values of x and y, and then indicating the solution by drawing a very short 

line segment with that particular slope at the point (x,y).  If y does not appear in the differential 

equation, you just calculate the slope for a random value of x, say x = 3.  Then you place little 

line segments with the calculated slope at all points (3,y) on your drawing. 

Let’s consider a very simple differential equation:  
dy

dx
 = 2x.  For all integer values of x and y 

between -2 and 2, find the value of dy/dx at (x,y).  Now create a slope field by drawing small 

lines with the correct slope.  As you are working, you will notice that the slopes are the same at 

many of the points.  Next, draw the slope field for 
dy

dx
 = xy.  By actually drawing these slope 

fields yourself, you should get a feel for the difference between fields that depend only on x, 

and those that depend on both x and y.  For exams, it is important to be able to match slope 

fields with the correct differential equation. 

Notice that drawing a slope field is not particularly difficult, but it is tedious work.  For this 

reason, slope fields are best made by computers, not by people.  There are many online slope 

field generators available.  The picture below shows a slope field for 
dy

dx
 = 2x: 
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Notice that the little lines appear to form a parabola-like pattern.  The x and y coordinates were 

selected to range from -1 to 1.  If you set the initial conditions to x = 0, y = 0, the computer will 

draw the simplest original function, the parabola y = x2. 

It is also possible for a human being to use a slope field to make a sketch of one of the functions 

that is the solution to a differential equation.  You need a starting point, also called an initial 

condition, so you know which solution you are drawing.  From your starting point, you follow 

the directions indicated by the little lines you encounter.  At first it may seem like that could 

lead you anywhere, but with some practice you will see that there is really only one way to go 

from any particular point.  Again, a computer can perform this task much more accurately and 

efficiently. 
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Taking the Derivative of a Differential Equation 
 

 
If a differential equation contains y or another function, use implicit differentiation! 
 

 

 

Because this could get complicated, we’ll create our own simple example.  Let’s pick a function 

with a simple derivative, yet have it contain the original function within that derivative so the 

differential equation has y in it.  I’ll use the simple function y = e2x – 5.  The derivative of this is 

just 2e2x, so I can say that 
dy

dx
 = 2y + 10.  Now, let’s take the derivative of that, which will be the 

second derivative of y.   

I know it is tempting to just put 2 on the right side, but be careful, y is a function rather than 

just a variable!  Use implicit differentiation:  
d2y

dx2
 = 2 

dy

dx
 

Because we already have an expression for 
dy

dx
, we can just substitute that into the equation.  

That means that the second derivative  
d2y

dx2
 is 2(2y + 10), which is 4y + 20.  We also have an 

expression for y in this case, so we can say that 4y + 20 = 4(e2x – 5) + 20 = 4e2x. 

Check that this answer is correct by differentiating y = e2x – 5 twice. 

 

Example 

Find the derivative of 
dP

dt
 = 

1

10
 P2 – 100, with respect to t. 

Notice that P is a function of t, so use implicit differentiation: 

d2P

dt2
 = 

1

10
 2P 

dP

dt
     

d2P

dt2
 = 

1

5
 P (

1

10
 P2 – 100) 

d2P

dt2
 = 

1

50
 P3 – 20P 
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Solving Differential Equation Problems 

 
If you have a differential equation describing f’(x), and one point on the graph of the initial 

function f(x), you may need to find a second point on the graph of f(x).  Here you only have a 

few options available to you based on what you have learned in your course. 

  It is possible to solve the differential equation using the skills you have acquired in your 

course.  You can then use the given point (x, f(x)) to eliminate the constant and find the 

specific equation for f(x).

 The differential equation is too hard for you to solve, but your calculator is able to find the 

corresponding definite integral, ∫ f ′(x)dx
b

a
.   Use the Fundamental Theorem of Calculus to 

see that ∫ f ′(x)dx
b

a
 = f(b) – f(a).  If you know f(a) you can find f(b) because the calculator 

will give you the numerical value of the integral.

  Neither you nor your calculator can do anything to solve the differential equation.  You 

can still use linear approximation to estimate the value of the function f(x) at a point that 

is reasonably close to the given point.  This is usually fairly easy because the differential 

equation provides the slope of the tangent line at the given point.  To make things a little 

harder you may be asked to figure out if your estimate is above or below the actual value.  

This means that you must know if f(x) is concave up or concave down over the entire 

interval between the two points.  Check the second derivative, 
d2y

dx2
.  If both x and y 

appear in the second derivative, you will need to know if they are positive or negative 

over the interval so you can determine the sign of the second derivative.  Recall that if 
d2y

dx2
 

is positive the function is concave up, and your estimate will be lower than the actual 

value.

 You can’t solve the differential equation and the given point is not very close to the point 

where you need the value.  You can draw a slope field to estimate the value of the 

function at the required point.  This is slow and tedious and very unlikely to appear on 

your exam. 
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